CMPT 210: Probability and Computing

Lecture 11

Sharan Vaswani February 13, 2024 As an example, let us focus on A, B being binary 2×2 matrices.

Example:
$$A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$ then $C = AB = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$

Objective: Verify whether a matrix multiplication operation is correct.

Trivial way: Do the matrix multiplication ourselves, and verify it using $O(n^3)$ (or $O(n^{2.373})$) operations.

Frievald's Algorithm: Randomized algorithm to verify matrix multiplication with high probability in $O(n^2)$ time.

Q: For $n \times n$ matrices A, B and D, is D = AB?

Algorithm:

- Generate a random *n*-bit vector *x*, by making each bit *x_i* either 0 or 1 *independently* with probability ¹/₂. E.g., for *n* = 2, toss a fair coin independently twice with the scheme H is 0 and T is 1). If we get *HT*, then set *x* = [0; 1].
- 2. Compute t = Bx and y = At = A(Bx) and z = Dx.
- 3. Output "yes" if y = z (all entries need to be equal), else output "no".

Computational complexity: Step 1 can be done in O(n) time. Step 2 requires 3 matrix vector multiplications and can be done in $O(n^2)$ time. Step 3 requires comparing two *n*-dimensional vectors and can be done in O(n) time. Hence, the total computational complexity is $O(n^2)$.

Let us run the algorithm on an example. Suppose we have generated x = [1; 0]

$$A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \quad ; \quad B = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \quad ; \quad D = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$
$$Bx = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \quad ; \quad y = A(Bx) = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \quad ; \quad z = Dx = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

Hence the algorithm will correctly output "no" since $D \neq AB$.

Q: Suppose we have generated x = [0; 0]. What is y and z? Ans: y = [0; 0] and z = [0; 0]. In this case, y = z and the algorithm will incorrectly output "yes" even though $D \neq AB$. Let us run the algorithm on an example. Suppose we have generated x = [1; 0].

$$A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \quad ; \quad B = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \quad ; \quad C = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$$
$$Bx = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \quad ; \quad y = A(Bx) = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \quad ; \quad z = Cx = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

Hence the algorithm will correctly output "yes" since C = AB.

Q: Suppose we have generated x = [0; 1]. What is y and z? Ans: y = [1; 0] and z = [1; 0]. In this case again, y = z and the algorithm will correctly output "yes".

(Basic) Frievald's Algorithm

Let us analyze the algorithm for general matrix multiplication.

Case (i): If D = AB, does the algorithm always output "yes"? Yes! Since D = AB, for any vector x, Dx = ABx.

Case (ii) If $D \neq AB$, does the algorithm always output "no"?

Claim: For any input matrices A, B, D if $D \neq AB$, then the (Basic) Frievald's algorithm will output "no" with probability $\geq \frac{1}{2}$.

YesNo
$$D = AB$$
10 $D \neq AB$ $< \frac{1}{2}$ $\geq \frac{1}{2}$

Table 1: Probabilities for Basic Frievalds Algorithm

Proof: If $D \neq AB$, we wish to compute the probability that algorithm outputs "yes" and prove that it less than $\frac{1}{2}$.

Define E := (AB - D) and r := Ex = (AB - D)x = y - z. If $D \neq AB$, then $\exists (i,j)$ s.t. $E_{i,j} \neq 0$.

$$Pr[Algorithm outputs "yes"] = Pr[y = z] = Pr[r = 0]$$

=
$$Pr[(r_1 = 0) \cap (r_2 = 0) \cap \ldots \cap (r_i = 0) \cap \ldots]$$

=
$$Pr[(r_i = 0)] Pr[(r_1 = 0) \cap (r_2 = 0) \cap \ldots \cap (r_n = 0) | r_i = 0]$$

(By def. of conditional probability)

 \implies Pr[Algorithm outputs "yes"] \leq Pr[$r_i = 0$] (Probabilities are in [0, 1])

To complete the proof, on the next slide, we will prove that $Pr[r_i = 0] \leq \frac{1}{2}$.

(Basic) Frievald's Algorithm

$$r_{i} = \sum_{k=1}^{n} E_{i,k} x_{k} = E_{i,j} x_{j} + \sum_{k \neq j} E_{i,k} x_{k} = E_{i,j} x_{j} + \omega \qquad (\omega := \sum_{k \neq j} E_{i,k} x_{k})$$

 $\Pr[r_i = 0] = \Pr[r_i = 0 | \omega = 0] \Pr[\omega = 0] + \Pr[r_i = 0 | \omega \neq 0] \Pr[\omega \neq 0]$ (By the law of total probability)

$$\Pr[r_i = 0 | \omega = 0] = \Pr[x_j = 0] = \frac{1}{2}$$

$$\Pr[r_i = 0 | \omega \neq 0] = \Pr[(x_j = 1) \cap E_{i,j} = -\omega] = \Pr[(x_j = 1)] \Pr[E_{i,j} = -\omega | x_j = 1]$$
(By def. of conditional probability)

$$\implies \Pr[r_i = 0 | \omega \neq 0] \leq \Pr[(x_j = 1)] = \frac{1}{2} \qquad (\text{Probabilities are in } [0, 1], \ \Pr[x_j = 1] = \frac{1}{2})$$
$$\implies \Pr[r_i = 0] \leq \frac{1}{2} \Pr[\omega = 0] + \frac{1}{2} \Pr[\omega \neq 0] = \frac{1}{2} \Pr[\omega = 0] + \frac{1}{2} [1 - \Pr[\omega = 0]] = \frac{1}{2} (\Pr[E^c] = 1 - \Pr[E])$$
$$\implies \Pr[\text{Algorithm outputs "yes"}] \leq \Pr[r_i = 0] \leq \frac{1}{2}.$$

Hence, if $D \neq AB$, the Algorithm outputs "yes" with probability $\leq \frac{1}{2} \implies$ the Algorithm outputs "no" with probability $\geq \frac{1}{2}$.

In the worst case, the algorithm can be incorrect half the time! We promised the algorithm would return the correct answer with "high" probability close to 1.

A common trick in randomized algorithms is to have *m* independent trials of an algorithm and aggregate the answer in some way, reducing the probability of error, thus *amplifying the probability of success*.

Questions?