CMPT 210: Probability and Computing

Lecture 10

Sharan Vaswani
February 8, 2024

Recap

Conditional probability: $\operatorname{Pr}[E \mid F]=\frac{\operatorname{Pr}[E \cap F]}{\operatorname{Pr}[F]}$.
Multiplication Rule: For events $E_{1}, E_{2}, \ldots, E_{n}$,
$\operatorname{Pr}\left[E_{1} \cap E_{2} \ldots \cap E_{n}\right]=\operatorname{Pr}\left[E_{1}\right] \operatorname{Pr}\left[E_{2} \mid E_{1}\right] \operatorname{Pr}\left[E_{3} \mid E_{1} \cap E_{2}\right] \ldots \operatorname{Pr}\left[E_{n} \mid E_{1} \cap E_{2} \cap \ldots E_{n-1}\right]$.
Conditional probability for complement events: For events $E, F, \operatorname{Pr}\left[E^{c} \mid F\right]=1-\operatorname{Pr}[E \mid F]$. Bayes Rule: For events E and F if $\operatorname{Pr}[E] \neq 0$ and $\operatorname{Pr}[F] \neq 0$, then, $\operatorname{Pr}[F \mid E]=\frac{\operatorname{Pr}[E \mid F] \operatorname{Pr}[F]}{\operatorname{Pr}[E]}$.

Law of Total Probability and Bayes rule

Law of Total Probability: For events E and $F, \operatorname{Pr}[E]=\operatorname{Pr}[E \mid F] \operatorname{Pr}[F]+\operatorname{Pr}\left[E \mid F^{c}\right] \operatorname{Pr}\left[F^{c}\right]$. Proof:

$$
\begin{aligned}
E & =(E \cap F) \cup\left(E \cap F^{c}\right) \\
\Longrightarrow \operatorname{Pr}[E] & =\operatorname{Pr}\left[(E \cap F) \cup\left(E \cap F^{c}\right)\right]=\operatorname{Pr}[E \cap F]+\operatorname{Pr}\left[E \cap F^{c}\right]
\end{aligned}
$$

(By union-rule for disjoint events)

$$
\operatorname{Pr}[E]=\operatorname{Pr}[E \mid F] \operatorname{Pr}[F]+\operatorname{Pr}\left[E \mid F^{c}\right] \operatorname{Pr}\left[F^{c}\right] \quad \text { (By definition of conditional probability) }
$$

Combining Bayes rule and Law of total probability

$$
\begin{array}{lc}
\operatorname{Pr}[F \mid E]=\frac{\operatorname{Pr}[F \cap E]}{\operatorname{Pr}[E]}=\frac{\operatorname{Pr}[E \mid F] \operatorname{Pr}[F]}{\operatorname{Pr}[E]} & \text { (By definition of conditional probability) } \\
\operatorname{Pr}[F \mid E]=\frac{\operatorname{Pr}[E \mid F] \operatorname{Pr}[F]}{\operatorname{Pr}[E \mid F] \operatorname{Pr}[F]+\operatorname{Pr}\left[E \mid F^{c}\right] \operatorname{Pr}\left[F^{c}\right]} & \text { (By law of total probability) }
\end{array}
$$

Total Probability - Examples

Q: In answering a question on a multiple-choice test, a student either knows the answer or she guesses. Let p be the probability that she knows the answer and $1-p$ the probability that she guesses. Assume that a student who guesses at the answer will be correct with probability $\frac{1}{m}$, where m is the number of multiple-choice alternatives. What is the conditional probability that a student knew the answer to a question given that she answered it correctly?

Let C be the event that the student answers the question correctly. Let K be the event that the student knows the answer. We wish to compute $\operatorname{Pr}[K \mid C]$.

We know that $\operatorname{Pr}[K]=p$ and $\operatorname{Pr}\left[C \mid K^{c}\right]=1 / m, \operatorname{Pr}[C \mid K]=1$. Hence, $\operatorname{Pr}[C]=\operatorname{Pr}[C \mid K] \operatorname{Pr}[K]+\operatorname{Pr}\left[C \mid K^{c}\right] \operatorname{Pr}\left[K^{c}\right]=(1)(p)+\frac{1}{m}(1-p)$.
$\operatorname{Pr}[K \mid C]=\frac{\operatorname{Pr}[C \mid K] \operatorname{Pr}[K]}{\operatorname{Pr}[C]}=\frac{m p}{1+(m-1) P}$.

Total Probability - Examples

Q: An insurance company believes that people can be divided into two classes - those that are accident prone and those that are not. Their statistics show that an accident-prone person will have an accident at some time within a fixed 1 -year period with probability 0.4 , whereas this probability decreases to 0.2 for a non-accident-prone person. If we assume that 30% of the population is accident prone, what is the probability that a new policy holder will have an accident within a year of purchasing a policy?
Let $A=$ event that a new policy holder will have an accident within a year of purchasing a policy.
Let $B=$ event that the new policy holder is accident prone. We know that $\operatorname{Pr}[B]=0.3$,
$\operatorname{Pr}[A \mid B]=0.4, \operatorname{Pr}\left[A \mid B^{c}\right]=0.2$. By the law of total probability,
$\operatorname{Pr}[A]=\operatorname{Pr}[A \mid B] \operatorname{Pr}[B]+\operatorname{Pr}\left[A \mid B^{c}\right] \operatorname{Pr}\left[B^{c}\right]=(0.4)(0.3)+(0.2)(0.7)=0.26$.
Q: Suppose that a new policy holder has an accident within a year of purchasing their policy. What is the probability that they are accident prone?
Compute $\operatorname{Pr}[B \mid A]=\frac{\operatorname{Pr}[A \mid B] \operatorname{Pr}[B]}{\operatorname{Pr}[A]}=\frac{0.12}{0.26}=0.4615$.

Total Probability - Examples

Q: Alice is taking a probability class and at the end of each week she can be either up-to-date or she may have fallen behind. If she is up-to-date in a given week, the probability that she will be up-to-date (or behind) in the next week is 0.8 (or 0.2 , respectively). If she is behind in a given week, the probability that she will be up-to-date (or behind) in the next week is 0.6 (or 0.4, respectively). Alice is (by default) up-to-date when she starts the class. What is the probability that she is up-to-date after three weeks?

Let U_{i} and B_{i} be the events that Alice is up-to-date or behind respectively after i weeks. Since Alice starts the class up-to-date, $\operatorname{Pr}\left[U_{1}\right]=0.8$ and $\operatorname{Pr}\left[B_{1}\right]=0.2$. We also know that $\operatorname{Pr}\left[U_{2} \mid U_{1}\right]=0.8, \operatorname{Pr}\left[U_{3} \mid U_{2}\right]=0.8$ and $\operatorname{Pr}\left[B_{2} \mid U_{1}\right]=0.2, \operatorname{Pr}\left[B_{3} \mid U_{2}\right]=0.2$. Similarly, $\operatorname{Pr}\left[U_{2} \mid B_{1}\right]=0.6, \operatorname{Pr}\left[U_{3} \mid B_{2}\right]=0.6$ and $\operatorname{Pr}\left[B_{2} \mid B_{1}\right]=0.4, \operatorname{Pr}\left[B_{3} \mid B_{2}\right]=0.4$.
We wish to compute $\operatorname{Pr}\left[U_{3}\right]$. By the law of total probability,
$\operatorname{Pr}\left[U_{3}\right]=\operatorname{Pr}\left[U_{3} \mid U_{2}\right] \operatorname{Pr}\left[U_{2}\right]+\operatorname{Pr}\left[U_{3} \mid B_{2}\right] \operatorname{Pr}\left[B_{2}\right]$ and
$\operatorname{Pr}\left[U_{2}\right]=\operatorname{Pr}\left[U_{2} \mid U_{1}\right] \operatorname{Pr}\left[U_{1}\right]+\operatorname{Pr}\left[U_{2} \mid B_{1}\right] \operatorname{Pr}\left[B_{1}\right]$.
Hence, $\operatorname{Pr}\left[U_{2}\right]=(0.8)(0.8)+(0.6)(0.2)=0.76$, and $\operatorname{Pr}\left[U_{3}\right]=(0.8)(0.76)+(0.6)(0.24)=0.752$.

Simpson's Paradox

In 1973, there was a lawsuit against a university with the claim that a male candidate is more likely to be admitted to the university than a female.

Let us consider a simplified case - there are two departments, EE and CS, and men and women apply to the program of their choice. Let us define the following events: A is the event that the candidate is admitted to the program of their choice, F_{E} is the event that the candidate is a woman applying to EE, F_{C} is the event that the candidate is a woman applying to CS. Similarly, we can define M_{E} and M_{C}. Assumption: Candidates are either men or women, and that no candidate is allowed to be part of both EE and CS.

Lawsuit claim: Male candidate is more likely to be admitted to the university than a female i.e. $\operatorname{Pr}\left[A \mid M_{E} \cup M_{C}\right]>\operatorname{Pr}\left[A \mid F_{E} \cup F_{C}\right]$.

University response: In any given department, a male applicant is less likely to be admitted than a female i.e. $\operatorname{Pr}\left[A \mid F_{E}\right]>\operatorname{Pr}\left[A \mid M_{E}\right]$ and $\operatorname{Pr}\left[A \mid F_{C}\right]>\operatorname{Pr}\left[A \mid M_{C}\right]$.
Simpson's Paradox: Both the above statements can be simultaneously true.

Simpson's Paradox

CS	2 men admitted out of 5 candidates	40%
	50 women admitted out of 100 candidates	50%
EE	70 men admitted out of 100 candidates	70%
	4 women admitted out of 5 candidates	80%
Overall	72 men admitted, 105 candidates	$\approx 69 \%$
	54 women admitted, 105 candidates	$\approx 51 \%$

In the above example, $\operatorname{Pr}\left[A \mid F_{E}\right]=0.8>0.7=\operatorname{Pr}\left[A \mid M_{E}\right]$ and $\operatorname{Pr}\left[A \mid F_{C}\right]=0.5>0.4=\operatorname{Pr}\left[A \mid M_{C}\right]$. $\operatorname{Pr}\left[A \mid F_{E} \cup F_{C}\right] \approx 0.51$. Similarly, $\operatorname{Pr}\left[A \mid M_{E} \cup M_{C}\right] \approx 0.69$.

In general, Simpson's Paradox occurs when multiple small groups of data all exhibit a similar trend, but that trend reverses when those groups are aggregated.

Questions?

Back to throwing dice - Independent Events

Q: Suppose we throw two standard dice one after the other. What is the probability that we get two 6's in a row?
$E=$ We get a 6 in the second throw. $F=$ We get a 6 in the first throw. $E \cap F=$ we get two 6 's in a row. We are computing $\operatorname{Pr}[E \cap F] . \operatorname{Pr}[E]=\operatorname{Pr}[F]=\frac{1}{6}$.
$\operatorname{Pr}[E \mid F]=\frac{\operatorname{Pr}[E \cap F]}{\operatorname{Pr}[F]} \Longrightarrow \operatorname{Pr}[E \cap F]=\operatorname{Pr}[E \mid F] \operatorname{Pr}[F]$.
Since the two dice are independent, knowing that we got a 6 in the first throw does not change the probability that we will get a 6 in the second throw. Hence, $\operatorname{Pr}[E \mid F]=\operatorname{Pr}[E]$ (conditioning does not change the probability of the event).
Hence, $\operatorname{Pr}[E \cap F]=\operatorname{Pr}[E \mid F] \operatorname{Pr}[F]=\operatorname{Pr}[E] \operatorname{Pr}[F]=\frac{1}{6} \frac{1}{6}=\frac{1}{36}$.

Independent Events

Independent Events: Events E and F are said to be independent, if knowledge that F has occurred does not change the probability that E occurs. Formally,

$$
\operatorname{Pr}[E \mid F]=\operatorname{Pr}[E] \quad ; \quad \operatorname{Pr}[E \cap F]=\operatorname{Pr}[E] \operatorname{Pr}[F]
$$

Q: I toss two independent, fair coins. What is the probability that I get the HT sequence?
Define E to be the event that I get a heads in the first toss, and F be the event that I get a tails in the second toss. Since the two coins are independent, events E and F are also independent. $\operatorname{Pr}[E \cap F]=\operatorname{Pr}[E] \operatorname{Pr}[F]=\frac{1}{2} \frac{1}{2}=\frac{1}{4}$.
Q: I randomly choose a number from $\{1,2, \ldots, 10\} . E$ is the event that the number I picked is a prime. F is the event that the number I picked is odd. Are E and F independent?
$\operatorname{Pr}[E]=\frac{2}{5}, \operatorname{Pr}[F]=\frac{1}{2}, \operatorname{Pr}[E \cap F]=\frac{3}{10} . \operatorname{Pr}[E \cap F] \neq \operatorname{Pr}[E] \operatorname{Pr}[F]$. Another way: $\operatorname{Pr}[E \mid F]=\frac{3}{5}$ and $\operatorname{Pr}[E]=\frac{2}{5}$, and hence $\operatorname{Pr}[E \mid F] \neq \operatorname{Pr}[E]$. Conditioning on F tell us that prime number cannot be 2 , so it changes the probability of E.

Independent Events - Example

Q: We have a machine that has 2 independent components. The machine breaks if each of its 2 components break. Suppose each component can break with probability p, what is the probability that the machine does not break?

Let $E_{1}=$ Event that the first component breaks, $E_{2}=$ Event that the second component breaks. $M=$ Event that the machine breaks $=E_{1} \cap E_{2}$.
$\operatorname{Pr}[M]=\operatorname{Pr}\left[E_{1} \cap E_{2}\right]$. Since the two components are independent, E_{1} and E_{2} are independent, meaning that $\operatorname{Pr}\left[E_{1} \cap E_{2}\right]=\operatorname{Pr}\left[E_{1}\right] \operatorname{Pr}\left[E_{2}\right]=p^{2}$.
Probability that the machine does not break $=\operatorname{Pr}\left[M^{c}\right]=1-\operatorname{Pr}[M]=1-p^{2}$.

Independent Events - Examples

Q: We have a new machine that has 2 independent components. The machine breaks if either of its 2 components break. Suppose each component can break with probability p, what is the probability that the machine breaks?

For this machine, let M^{\prime} be the event that it breaks. In this case, $\operatorname{Pr}\left[M^{\prime}\right]=\operatorname{Pr}\left[E_{1} \cup E_{2}\right]$. Incorrect: By the union rule for mutually exclusive events, $\operatorname{Pr}\left[E_{1} \cup E_{2}\right]=\operatorname{Pr}\left[E_{1}\right]+\operatorname{Pr}\left[E_{2}\right]=2 p$. Mistake: Independence does not imply mutual exclusivity and we can not use the union rule. Independence implies that for any two events E and $F, \operatorname{Pr}[E \cap F]=\operatorname{Pr}[E] \operatorname{Pr}[F]$, while mutual exclusivity requires that $\operatorname{Pr}[E \cap F]=0$.

Correct way:

$$
\begin{array}{rlr}
\operatorname{Pr}\left[E_{1} \cup E_{2}\right] & =\operatorname{Pr}\left[E_{1}\right]+\operatorname{Pr}\left[E_{2}\right]-\operatorname{Pr}\left[E_{1} \cap E_{2}\right] \quad \text { (By the inclusion-exclusion rule) } \\
& =\operatorname{Pr}\left[E_{1}\right]+\operatorname{Pr}\left[E_{2}\right]-\operatorname{Pr}\left[E_{1}\right] \operatorname{Pr}\left[E_{2}\right]=2 p-p^{2} \quad \text { (Since } E_{1} \text { and } E_{2} \text { are independent.) }
\end{array}
$$

Questions?

Matrix Multiplication

Given two $n \times n$ matrices $-A$ and B, if $C=A B$, then,

$$
C_{i, j}=\sum_{k=1}^{n} A_{i, k} B_{k, j}
$$

Hence, in the worst case, computing $C_{i, j}$ is an $O(n)$ operation. There are n^{2} entries to fill in C and hence, in the absence of additional structure, matrix multiplication takes $O\left(n^{3}\right)$ time.
There are non-trivial algorithms for doing matrix multiplication more efficiently:

- (Strassen, 1969) Requires $O\left(n^{2.81}\right)$ operations.
- (Coppersmith-Winograd, 1987) Requires $O\left(n^{2.376}\right)$ operations.
- (Alman-Williams, 2020) Requires $O\left(n^{2.373}\right)$ operations.
- Belief is that it can be done in time $O\left(n^{2+\epsilon}\right)$ for $\epsilon>0$.

Verifying Matrix Multiplication

As an example, let us focus on A, B being binary 2×2 matrices.
Example: $A=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right], B=\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]$ then $C=A B=\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]$
Objective: Verify whether a matrix multiplication operation is correct.
Trivial way: Do the matrix multiplication ourselves, and verify it using $O\left(n^{3}\right)$ (or $O\left(n^{2.373}\right)$) operations.

Frievald's Algorithm: Randomized algorithm to verify matrix multiplication with high probability in $O\left(n^{2}\right)$ time.

(Basic) Frievald's Algorithm

Q: For $n \times n$ matrices A, B and D, is $D=A B$?

Algorithm:

1. Generate a random n-bit vector x, by making each bit x_{i} either 0 or 1 independently with probability $\frac{1}{2}$. E.g, for $n=2$, toss a fair coin independently twice with the scheme -H is 0 and T is 1). If we get $H T$, then set $x=[0 ; 1]$.
2. Compute $t=B x$ and $y=A t=A(B x)$ and $z=D x$.
3. Output "yes" if $y=z$ (all entries need to be equal), else output "no".

Computational complexity: Step 1 can be done in $O(n)$ time. Step 2 requires 3 matrix vector multiplications and can be done in $O\left(n^{2}\right)$ time. Step 3 requires comparing two n-dimensional vectors and can be done in $O(n)$ time. Hence, the total computational complexity is $O\left(n^{2}\right)$.

