CMPT 210: Probability and Computing

Lecture 1

Sharan Vaswani
January 9, 2024

Course Information

- Instructor: Sharan Vaswani (TASC-1 8221) Email: sharan_vaswani@sfu.ca
- Office Hours: Tuesday $11.30 \mathrm{am}-12.30 \mathrm{pm}$ (TASC-1 8221)
- Teaching Assistants: Anh Dang, Matin Aghaei
- TA Office Hours: (From 15 Jan) Wednesday, Thursday ($2.30 \mathrm{pm}-3.30 \mathrm{pm}$) in ASB 9814
- Course Webpage: https://vaswanis.github.io/210-W24.html
- Piazza: https://piazza.com/sfu.ca/spring2024/cmpt210/home
- Prerequisites: MACM 101, MATH 152 and MATH 232/MATH 240

Course Information

Objective: Introduce the foundational concepts in probability required by computing.

Syllabus:

- Combinatorics: Permutations, Binomial coefficients, Inclusion-Exclusion
- Probability theory: Independence, Conditional probability, Bayes' Theorem
- Probability theory: Random variables, Expectation, Variance
- Discrete distributions: Bernoulli, Binomial and Geometric, Joint distributions
- Tail inequalities: Markov's Inequality, Chebyshev's Inequality, Chernoff Bound
- Applications: Verifying matrix multiplication, Max-Cut, Machine Learning, Randomized QuickSort, AB Testing

Primary Resources:

- Mathematics for Computer Science (Meyer, Lehman, Leighton): https://people.csail.mit.edu/meyer/mcs.pdf
- Introduction to Probability and Statistics for Engineers and Scientists (Ross).

Course Information

Grading:

- 4 Assignments (45%)
- 1 Mid-Term (20\%) (29 February)
- 1 Final Exam (35\%) (TBD)
- Each assignment is due in 1 week via Coursys (on Tuesdays/Thursdays).
- For some flexibility, each student is allowed 1 late-submission and can submit the assignment the following Tuesday/Thursday.
- If you miss the mid-term (for a well-justified reason), we will reassign weight to the final.
- If you miss the final, there will be a make-up exam.

Questions?

Sets

Informal definition: Unordered collection of objects (referred to as elements)
Examples: $\{a, b, c\},\{\{a, b\},\{c, a\}\},\{1.2,2.5\}$, yyellow, red, green $\}$, $\{x \mid x$ is capital of a North American country $\},\{x \mid x$ is an integer in $[5,10]\}$.
There is no notion of an element appearing twice. E.g. $\{a, a, b\}=\{a, b\}$.
The order of the elements does not matter. E.g. $A=\{a, b\}=\{b, a\}$.
$C=\{x \mid x$ is a color of the rainbow $\}$
Elements of C : red, orange, yellow, green, blue, indigo, violet.
Membership: red $\in C$, brown $\notin C$.
Cardinality: Number of elements in the set. $|C|=7$
Q: $\mathrm{A}=\{x \mid 5<x<17$ and x is a power of 2$\}$. Enumerate A. What is $|A|$?
Ans: $A=\{8,16\},|A|=2$

Common Sets

- $\emptyset:$ Empty Set
- \mathbb{N} : Set of nonnegative integers $\{0,1,2 \ldots\}$
- \mathbb{Z} : Set of integers $\{-2,-1,0,1,2 \ldots\}$
- \mathbb{Q} : Set of rational numbers that can be expressed as p / q where $p, q \in \mathbb{Z}$ and $q \neq 0$. $\{-10.1,-1.2,0,5.5,15 \ldots\}$
- \mathbb{R} : Set of real numbers $\{e, \pi, \sqrt{2}, 2,5.4\}$
- \mathbb{C} : Set of complex numbers $\{2+5 i,-i, 1,23.3, \sqrt{2}\}$

Comparing sets: A is a subset of $B(A \subseteq B)$ iff every element of A is an element of B. E.g. $A=\{a, b\}$ and $B=\{a, b, c\}$, then $A \subseteq B$. Every set is a subset of itself i.e. $A \subseteq A$.
A is a proper subset of $B(A \subset B)$ iff A is a subset of B, and A is not equal to B,
$Q:$ Is $\{1,4,2\} \subset\{2,4,1\}$. Is $\{1,4,2\} \subseteq\{2,4,1\}$ Ans: No, Yes
Q: Is $\mathbb{N} \subset \mathbb{Z}$? Is $\mathbb{C} \subset \mathbb{R}$? Ans: Yes, No
Q: What is $|\emptyset|$? Ans: 0

Set Operations

Union: The union of sets A and B consists of elements appearing in A OR B. If $A=\{1,2,3\}$ and $B=\{3,4,5\}$, then $A \cup B=\{1,2,3,4,5\}$.

Intersection: The intersection of sets A and B consists of elements that appear in both A AND B. If $A=\{1,2,3\}$ and $B=\{3,4,5\}$, then $A \cap B=\{3\}$.

Set Operations

Set difference: The set difference of A and B consists of all elements that are in A, but not in B. $A=\{1,2,3\}$ and $B=\{3,4,5\}$, then $A \backslash B=A-B=\{1,2\}$. $B \backslash A=B-A=\{4,5\}$.

Complement: Given a domain (or universe) D such that $A \subset D$, the complement of A consists of all elements that are not in A. $D=\mathbb{N}, A=\{1,2,3\}$. $A \subset D$ and $\bar{A}=\{0,4,5,6, \ldots\}$. $A \cup \bar{A}=D, A \cap \bar{A}=\emptyset, A \backslash \bar{A}=A$.
Q: $D=\mathbb{N}, A=\{1,2,3\}$ and $B=\{3,4,5\}$. Compute $\overline{A \cap B},(B \backslash A) \cup(A \backslash B)$.
Ans: $\overline{A \cap B}=\{0,1,2,4,5, \ldots\},(B \backslash A) \cup(A \backslash B)=\{1,2,4,5\}$
Power set of A is the set of all subsets of A. If $A=\{a, b, c\}$, then $\operatorname{Pow}(A)=\{\emptyset,\{a\},\{b\},\{c\},\{a, b\},\{a, c\},\{b, c\},\{a, b, c\}\}$.

Set operations and relations

Disjoint sets: Two sets are disjoint iff $A \cap B=\emptyset$.
Symmetric Difference: $A \Delta B$ is the set that contains those elements that are either in A or in B, but not in both.

Q: Show $A \Delta B$ on a Venn diagram. For $A=\{1,2,3\}$ and $B=\{3,4,5\}$, compute $A \Delta B$.
Ans: $A \Delta B=\{1,2,4,5\}$
Cartesian product of sets is a set consisting of ordered pairs (tuples), i.e.
$A \times B=\{(a, b)$ s.t. $a \in A, b \in B\}$. If $A=\{1,2,3\}$ and $B=\{3,4,5\}$.
$A \times B=\{(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,3),(3,4),(3,5)\}$.
If sets are 1 -dimensional objects, Cartesian product of 2 sets can be thought of as 2-dimensional.
Q. Is $A \times B=B \times A$? Ans: No. The order matters

In general, $A_{1} \times A_{2} \times \ldots \times A_{k}=\left\{\left(a_{1}, a_{2}, \ldots, a_{k}\right) \mid a_{1} \in A_{1}, a_{2} \in A_{2}, \ldots, a_{k} \in A_{k}\right\}$ where $\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ is referred to as a k-tuple.

Laws of Set Theory

Distributive Law: $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$
$z \in A \cap(B \cup C)$
iff $z \in A$ AND $z \in(B \cup C)$
iff $z \in A$ AND $(z \in B$ OR $z \in C)$
Use the distributivity of AND over OR, for binary literals $w, x, y \in\{0,1\}, x$ AND $(y$ OR $w)=$ (x AND y) OR (x AND w). For $x:=z \in A, y:=z \in B, w:=z \in C$,
iff $(z \in A$ AND $z \in B)$ OR $(z \in A$ AND $z \in C)$
iff $z \in(A \cap B) \mathrm{OR} z \in(A \cap C)$
iff $z \in(A \cap B) \cup(A \cap C)$

Questions?

Functions

A function assigns an element of one set, called the domain, to an element of another set, called the codomain s.t. for every element in the domain, there is at most one element in the codomain.

If A is the domain and B is the codomain of function f, then $f: A \rightarrow B$.
If $a \in A$, and $b \in B$, and $f(a)=b$, we say the function f maps a to b, b is the value of f at argument a, b is the image of a, a is the preimage of b.
$A=\{a, b, c, \ldots z\}, B=\{1,2,3, \ldots 26\}$, then we can define a function $f: A \rightarrow B$ such that $f(a)=1, f(b)=2 . f$ thus assigns a number to each letter in the alphabet.
Consider $f: \mathbb{R} \rightarrow \mathbb{R}$ s.t. for $x \in \mathbb{R}, f(x)=x^{2} . f(2.5)=6.25 \in \mathbb{R}$.
A function cannot assign different elements in the codomain to the same element in the domain. For example, if $f(a)=1$ and $f(a)=2$, the f is not a function.

Functions

A function that assigns a value to every element in the domain is called a total function, while one that does not necessarily do so is called a partial function.

For $x \in \mathbb{R}, f(x)=1 / x^{2}$ is a partial function because no value is assigned to $x=0$, since $1 / 0$ is undefined.

Q: Consider $f: \mathbb{R}_{+} \rightarrow \mathbb{R}$ such that $f(x)=x$. Is f a function? Ans: Yes
Q: For $x \in[-1,1], y \in \mathbb{R}$, consider $g(x)=y$ s.t. $x^{2}+y^{2}=1$. Is g a function? Ans: No
Q: For $x \in\{-1,1\}, y \in \mathbb{R}$, consider $g(x)=y$ s.t. $x^{2}+y^{2}=1$. Is g a function? Ans: Yes

