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Recap

For events E and F , we wish to compute Pr[E |F ], the probability of event E conditioned on F .

Approach 1: With conditioning, F can be interpreted as the new sample space such that for
ω /∈ F , Pr[ω|F ] = 0.

Approach 2: Pr[E |F ] = Pr[E∩F ]
Pr[F ] .

Multiplication Rule: For events E1,E2, . . . ,En,
Pr[E1 ∩ E2 . . . ∩ En] = Pr[E1] Pr[E2|E1] Pr[E3|E1 ∩ E2] . . .Pr[En|E1 ∩ E2 ∩ . . .En−1].
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Conditional Probability - Examples

Q: A test for detecting cancer has the following accuracy – (i) If a person has cancer, there is a
10% chance that the test will say that the person does not have it. This is called a “false
negative” and (ii) If a person does not have cancer, there is a 5% chance that the test will say
that the person does have it. This is called a “false positive”. For patients that have no family
history of cancer, the incidence of cancer is 1%. Person X does not have any family history of
cancer, but is detected to have cancer. What is the probability that the Person X does have
cancer?
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Conditional Probability - Examples

S = {(Healthy ,Positive), (Healthy ,Negative), (Sick ,Positive), (Sick,Negative)}.

A is the event that Person X has cancer. B is the event that the test is positive.

Pr[A|B] = Pr[A∩B]
Pr[B] = Pr[{(S,P)}]

Pr[{(S,P),(H,P)}] =
0.0090

0.0090+0.0495 ≈ 15.4%.
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Questions?
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Conditional Probability

Conditional probability for complement events: For events E , F , Pr[E c |F ] = 1 − Pr[E |F ].

Proof : Since E ∪ E c = S, for an event F such that Pr[F ] ̸= 0,

(E ∪ E c) ∩ F = S ∩ F = F

(E ∪ E c) ∩ F = (E ∩ F ) ∪ (E c ∩ F ) (Distributive Law)

=⇒ Pr[(E ∩ F ) ∪ (E c ∩ F )] = Pr[(E ∪ E c) ∩ F ]

Since E ∩ F and E c ∩ F are mutually exclusive events,

Pr[E ∩ F ] + Pr[E c ∩ F ] = Pr[F ] =⇒ Pr[E c ∩ F ]

Pr[F ]
= 1 − Pr[E ∩ F ]

Pr[F ]

=⇒ Pr[E c |F ] = 1 − Pr[E |F ] (By def. of conditional probability)
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Bayes Rule

Bayes Rule: For events E and F if Pr[E ] ̸= 0 and Pr[F ] ̸= 0, then, Pr[F |E ] = Pr[E |F ] Pr[F ]
Pr[E ] .

Proof : Using the formula for conditional probability,

Pr[E |F ] = Pr[E ∩ F ]

Pr[F ]
; Pr[F |E ] = Pr[F ∩ E ]

Pr[E ]

=⇒ Pr[E ∩ F ] = Pr[E |F ] Pr[F ] ; Pr[F ∩ E ] = Pr[F |E ] Pr[E ]
=⇒ Pr[E |F ] Pr[F ] = Pr[F |E ] Pr[E ]

=⇒ Pr[F |E ] = Pr[E |F ] Pr[F ]
Pr[E ]

Allows us to compute Pr[F |E ] using Pr[E |F ]. Later in the course, we will see an application of
the Bayes rule to machine learning.
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Law of Total Probability and Bayes rule

Law of Total Probability: For events E and F , Pr[E ] = Pr[E |F ] Pr[F ] + Pr[E |F c ] Pr[F c ].
Proof :

E = (E ∩ F ) ∪ (E ∩ F c)

=⇒ Pr[E ] = Pr[(E ∩ F ) ∪ (E ∩ F c)] = Pr[E ∩ F ] + Pr[E ∩ F c ]

(By union-rule for disjoint events)

Pr[E ] = Pr[E |F ] Pr[F ] + Pr[E |F c ] Pr[F c ] (By definition of conditional probability)

Combining Bayes rule and Law of total probability

Pr[F |E ] = Pr[F ∩ E ]

Pr[E ]
=

Pr[E |F ] Pr[F ]
Pr[E ]

(By definition of conditional probability)

Pr[F |E ] = Pr[E |F ] Pr[F ]
Pr[E |F ] Pr[F ] + Pr[E |F c ] Pr[F c ]

(By law of total probability)
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Questions?
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Total Probability - Examples

Q: In answering a question on a multiple-choice test, a student either knows the answer or she
guesses. Let p be the probability that she knows the answer and 1 − p the probability that she
guesses. Assume that a student who guesses at the answer will be correct with probability 1

m ,
where m is the number of multiple-choice alternatives. What is the conditional probability that a
student knew the answer to a question given that she answered it correctly?

Let C be the event that the student answers the question correctly. Let K be the event that the
student knows the answer. We wish to compute Pr[K |C ].

We know that Pr[K ] = p and Pr[C |K c ] = 1/m, Pr[C |K ] = 1. Hence,
Pr[C ] = Pr[C |K ] Pr[K ] + Pr[C |K c ] Pr[K c ] = (1)(p) + 1

m (1 − p).

Pr[K |C ] = Pr[C |K ] Pr[K ]
Pr[C ] = mp

1+(m−1)p .
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Total Probability - Examples

Q: An insurance company believes that people can be divided into two classes — those that are
accident prone and those that are not. Their statistics show that an accident-prone person will
have an accident at some time within a fixed 1-year period with probability 0.4, whereas this
probability decreases to 0.2 for a non-accident-prone person. If we assume that 30% of the
population is accident prone, what is the probability that a new policy holder will have an
accident within a year of purchasing a policy?

Let A = event that a new policy holder will have an accident within a year of purchasing a policy.
Let B = event that the new policy holder is accident prone. We know that Pr[B] = 0.3,
Pr[A|B] = 0.4, Pr[A|Bc ] = 0.2. By the law of total probability,
Pr[A] = Pr[A|B] Pr[B] + Pr[A|Bc ] Pr[Bc ] = (0.4)(0.3) + (0.2)(0.7) = 0.26.

Q: Suppose that a new policy holder has an accident within a year of purchasing their policy.
What is the probability that they are accident prone?

Compute Pr[B|A] = Pr[A|B] Pr[B]
Pr[A] = 0.12

0.26 = 0.4615.
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Total Probability - Examples

Q: Alice is taking a probability class and at the end of each week she can be either up-to-date or
she may have fallen behind. If she is up-to-date in a given week, the probability that she will be
up-to-date (or behind) in the next week is 0.8 (or 0.2, respectively). If she is behind in a given
week, the probability that she will be up-to-date (or behind) in the next week is 0.6 (or 0.4,
respectively). Alice is (by default) up-to-date when she starts the class. What is the probability
that she is up-to-date after three weeks?

Let Ui and Bi be the events that Alice is up-to-date or behind respectively after i weeks. Since
Alice starts the class up-to-date, Pr[U1] = 0.8 and Pr[B1] = 0.2. We also know that
Pr[U2|U1] = 0.8, Pr[U3|U2] = 0.8 and Pr[B2|U1] = 0.2, Pr[B3|U2] = 0.2. Similarly,
Pr[U2|B1] = 0.6, Pr[U3|B2] = 0.6 and Pr[B2|B1] = 0.4, Pr[B3|B2] = 0.4.

We wish to compute Pr[U3]. By the law of total probability,
Pr[U3] = Pr[U3|U2] Pr[U2] + Pr[U3|B2] Pr[B2] and
Pr[U2] = Pr[U2|U1] Pr[U1] + Pr[U2|B1] Pr[B1].

Hence, Pr[U2] = (0.8)(0.8) + (0.6)(0.2) = 0.76, and Pr[U3] = (0.8)(0.76) + (0.6)(0.24) = 0.752.
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Simpson’s Paradox

In 1973, there was a lawsuit against a university with the claim that a male candidate is more
likely to be admitted to the university than a female.

Let us consider a simplified case – there are two departments, EE and CS, and men and women
apply to the program of their choice. Let us define the following events: A is the event that the
candidate is admitted to the program of their choice, FE is the event that the candidate is a
woman applying to EE, FC is the event that the candidate is a woman applying to CS. Similarly,
we can define ME and MC . Assumption: Candidates are either men or women, and that no
candidate is allowed to be part of both EE and CS.

Lawsuit claim: Male candidate is more likely to be admitted to the university than a female i.e.
Pr[A|ME ∪MC ] > Pr[A|FE ∪ FC ].

University response: In any given department, a male applicant is less likely to be admitted
than a female i.e. Pr[A|FE ] > Pr[A|ME ] and Pr[A|FC ] > Pr[A|MC ].

Simpson’s Paradox: Both the above statements can be simultaneously true.
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Simpson’s Paradox

In the above example, Pr[A|FE ] = 0.8 > 0.7 = Pr[A|ME ] and Pr[A|FC ] = 0.5 > 0.4 = Pr[A|MC ].
Pr[A|FE ∪ FC ] ≈ 0.51. Similarly, Pr[A|ME ∪MC ] ≈ 0.69.

In general, Simpson’s Paradox occurs when multiple small groups of data all exhibit a similar
trend, but that trend reverses when those groups are aggregated.
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Questions?
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