CMPT 210: Probability and Computing

Lecture 9

Sharan Vaswani
February 2, 2023

Recap

For events E and F, we wish to compute $\operatorname{Pr}[E \mid F]$, the probability of event E conditioned on F. Approach 1: With conditioning, F can be interpreted as the new sample space such that for $\omega \notin F, \operatorname{Pr}[\omega \mid F]=0$.

Approach 2: $\operatorname{Pr}[E \mid F]=\frac{\operatorname{Pr}[E \cap F]}{\operatorname{Pr}[F]}$.
Multiplication Rule: For events $E_{1}, E_{2}, \ldots, E_{n}$, $\operatorname{Pr}\left[E_{1} \cap E_{2} \ldots \cap E_{n}\right]=\operatorname{Pr}\left[E_{1}\right] \operatorname{Pr}\left[E_{2} \mid E_{1}\right] \operatorname{Pr}\left[E_{3} \mid E_{1} \cap E_{2}\right] \ldots \operatorname{Pr}\left[E_{n} \mid E_{1} \cap E_{2} \cap \ldots E_{n-1}\right]$.

Conditional Probability - Examples

Q: A test for detecting cancer has the following accuracy - (i) If a person has cancer, there is a 10% chance that the test will say that the person does not have it. This is called a "false negative" and (ii) If a person does not have cancer, there is a 5% chance that the test will say that the person does have it. This is called a "false positive". For patients that have no family history of cancer, the incidence of cancer is 1%. Person X does not have any family history of cancer, but is detected to have cancer. What is the probability that the Person X does have cancer?

Conditional Probability - Examples

$\mathcal{S}=\{($ Healthy, Positive $),($ Healthy, Negative $),($ Sick, Positive $),($ Sick, Negative $)\}$.
A is the event that Person X has cancer. B is the event that the test is positive.

Questions?

Conditional Probability

Conditional probability for complement events: For events $E, F, \operatorname{Pr}\left[E^{c} \mid F\right]=1-\operatorname{Pr}[E \mid F]$. Proof: Since $E \cup E^{c}=\mathcal{S}$, for an event F such that $\operatorname{Pr}[F] \neq 0$,

$$
\begin{aligned}
\left(E \cup E^{c}\right) \cap F & =\mathcal{S} \cap F=F \\
\left(E \cup E^{c}\right) \cap F & =(E \cap F) \cup\left(E^{c} \cap F\right) \\
\Longrightarrow \operatorname{Pr}\left[(E \cap F) \cup\left(E^{c} \cap F\right)\right] & =\operatorname{Pr}\left[\left(E \cup E^{c}\right) \cap F\right]
\end{aligned}
$$

(Distributive Law)

Since $E \cap F$ and $E^{c} \cap F$ are mutually exclusive events,

$$
\begin{aligned}
& \operatorname{Pr}[E \cap F]+\operatorname{Pr}\left[E^{c} \cap F\right]=\operatorname{Pr}[F] \Longrightarrow \frac{\operatorname{Pr}\left[E^{c} \cap F\right]}{\operatorname{Pr}[F]}=1-\frac{\operatorname{Pr}[E \cap F]}{\operatorname{Pr}[F]} \\
& \Longrightarrow \operatorname{Pr}\left[E^{c} \mid F\right]=1-\operatorname{Pr}[E \mid F] \quad \text { (By def. of conditional probability) }
\end{aligned}
$$

Bayes Rule

Bayes Rule: For events E and F if $\operatorname{Pr}[E] \neq 0$ and $\operatorname{Pr}[F] \neq 0$, then, $\operatorname{Pr}[F \mid E]=\frac{\operatorname{Pr}[E \mid F] \operatorname{Pr}[F]}{\operatorname{Pr}[E]}$. Proof: Using the formula for conditional probability,

$$
\begin{aligned}
\operatorname{Pr}[E \mid F] & =\frac{\operatorname{Pr}[E \cap F]}{\operatorname{Pr}[F]} ; \quad \operatorname{Pr}[F \mid E]=\frac{\operatorname{Pr}[F \cap E]}{\operatorname{Pr}[E]} \\
\Longrightarrow \operatorname{Pr}[E \cap F] & =\operatorname{Pr}[E \mid F] \operatorname{Pr}[F] \quad ; \quad \operatorname{Pr}[F \cap E]=\operatorname{Pr}[F \mid E] \operatorname{Pr}[E] \\
\Longrightarrow \operatorname{Pr}[E \mid F] \operatorname{Pr}[F] & =\operatorname{Pr}[F \mid E] \operatorname{Pr}[E] \\
\Longrightarrow \operatorname{Pr}[F \mid E] & =\frac{\operatorname{Pr}[E \mid F] \operatorname{Pr}[F]}{\operatorname{Pr}[E]}
\end{aligned}
$$

Allows us to compute $\operatorname{Pr}[F \mid E]$ using $\operatorname{Pr}[E \mid F]$. Later in the course, we will see an application of the Bayes rule to machine learning.

Law of Total Probability and Bayes rule

Law of Total Probability: For events E and $F, \operatorname{Pr}[E]=\operatorname{Pr}[E \mid F] \operatorname{Pr}[F]+\operatorname{Pr}\left[E \mid F^{c}\right] \operatorname{Pr}\left[F^{c}\right]$. Proof:

$$
\begin{aligned}
E & =(E \cap F) \cup\left(E \cap F^{c}\right) \\
\Longrightarrow \operatorname{Pr}[E] & =\operatorname{Pr}\left[(E \cap F) \cup\left(E \cap F^{c}\right)\right]=\operatorname{Pr}[E \cap F]+\operatorname{Pr}\left[E \cap F^{c}\right]
\end{aligned}
$$

(By union-rule for disjoint events)

$$
\operatorname{Pr}[E]=\operatorname{Pr}[E \mid F] \operatorname{Pr}[F]+\operatorname{Pr}\left[E \mid F^{c}\right] \operatorname{Pr}\left[F^{c}\right] \quad \text { (By definition of conditional probability) }
$$

Combining Bayes rule and Law of total probability

$$
\begin{array}{ll}
\operatorname{Pr}[F \mid E]=\frac{\operatorname{Pr}[F \cap E]}{\operatorname{Pr}[E]}=\frac{\operatorname{Pr}[E \mid F] \operatorname{Pr}[F]}{\operatorname{Pr}[E]} & \text { (By definition of conditional probability) } \\
\operatorname{Pr}[F \mid E]=\frac{\operatorname{Pr}[E \mid F] \operatorname{Pr}[F]}{\operatorname{Pr}[E \mid F] \operatorname{Pr}[F]+\operatorname{Pr}\left[E \mid F^{c}\right] \operatorname{Pr}\left[F^{c}\right]} & \text { (By law of total probability) }
\end{array}
$$

Questions?

Total Probability - Examples

Q: In answering a question on a multiple-choice test, a student either knows the answer or she guesses. Let p be the probability that she knows the answer and $1-p$ the probability that she guesses. Assume that a student who guesses at the answer will be correct with probability $\frac{1}{m}$, where m is the number of multiple-choice alternatives. What is the conditional probability that a student knew the answer to a question given that she answered it correctly?

Let C be the event that the student answers the question correctly. Let K be the event that the student knows the answer. We wish to compute $\operatorname{Pr}[K \mid C]$.

We know that $\operatorname{Pr}[K]=p$ and $\operatorname{Pr}\left[C \mid K^{c}\right]=1 / m, \operatorname{Pr}[C \mid K]=1$. Hence, $\operatorname{Pr}[C]=\operatorname{Pr}[C \mid K] \operatorname{Pr}[K]+\operatorname{Pr}\left[C \mid K^{c}\right] \operatorname{Pr}\left[K^{c}\right]=(1)(p)+\frac{1}{m}(1-p)$.
$\operatorname{Pr}[K \mid C]=\frac{\operatorname{Pr}[C \mid K] \operatorname{Pr}[K]}{\operatorname{Pr}[C]}=\frac{m p}{1+(m-1) P}$.

Total Probability - Examples

Q: An insurance company believes that people can be divided into two classes - those that are accident prone and those that are not. Their statistics show that an accident-prone person will have an accident at some time within a fixed 1 -year period with probability 0.4 , whereas this probability decreases to 0.2 for a non-accident-prone person. If we assume that 30% of the population is accident prone, what is the probability that a new policy holder will have an accident within a year of purchasing a policy?
Let $A=$ event that a new policy holder will have an accident within a year of purchasing a policy.
Let $B=$ event that the new policy holder is accident prone. We know that $\operatorname{Pr}[B]=0.3$,
$\operatorname{Pr}[A \mid B]=0.4, \operatorname{Pr}\left[A \mid B^{c}\right]=0.2$. By the law of total probability,
$\operatorname{Pr}[A]=\operatorname{Pr}[A \mid B] \operatorname{Pr}[B]+\operatorname{Pr}\left[A \mid B^{c}\right] \operatorname{Pr}\left[B^{c}\right]=(0.4)(0.3)+(0.2)(0.7)=0.26$.
Q: Suppose that a new policy holder has an accident within a year of purchasing their policy. What is the probability that they are accident prone?
Compute $\operatorname{Pr}[B \mid A]=\frac{\operatorname{Pr}[A \mid B] \operatorname{Pr}[B]}{\operatorname{Pr}[A]}=\frac{0.12}{0.26}=0.4615$.

Total Probability - Examples

Q: Alice is taking a probability class and at the end of each week she can be either up-to-date or she may have fallen behind. If she is up-to-date in a given week, the probability that she will be up-to-date (or behind) in the next week is 0.8 (or 0.2 , respectively). If she is behind in a given week, the probability that she will be up-to-date (or behind) in the next week is 0.6 (or 0.4 , respectively). Alice is (by default) up-to-date when she starts the class. What is the probability that she is up-to-date after three weeks?

Let U_{i} and B_{i} be the events that Alice is up-to-date or behind respectively after i weeks. Since Alice starts the class up-to-date, $\operatorname{Pr}\left[U_{1}\right]=0.8$ and $\operatorname{Pr}\left[B_{1}\right]=0.2$. We also know that $\operatorname{Pr}\left[U_{2} \mid U_{1}\right]=0.8, \operatorname{Pr}\left[U_{3} \mid U_{2}\right]=0.8$ and $\operatorname{Pr}\left[B_{2} \mid U_{1}\right]=0.2, \operatorname{Pr}\left[B_{3} \mid U_{2}\right]=0.2$. Similarly, $\operatorname{Pr}\left[U_{2} \mid B_{1}\right]=0.6, \operatorname{Pr}\left[U_{3} \mid B_{2}\right]=0.6$ and $\operatorname{Pr}\left[B_{2} \mid B_{1}\right]=0.4, \operatorname{Pr}\left[B_{3} \mid B_{2}\right]=0.4$.
We wish to compute $\operatorname{Pr}\left[U_{3}\right]$. By the law of total probability,
$\operatorname{Pr}\left[U_{3}\right]=\operatorname{Pr}\left[U_{3} \mid U_{2}\right] \operatorname{Pr}\left[U_{2}\right]+\operatorname{Pr}\left[U_{3} \mid B_{2}\right] \operatorname{Pr}\left[B_{2}\right]$ and
$\operatorname{Pr}\left[U_{2}\right]=\operatorname{Pr}\left[U_{2} \mid U_{1}\right] \operatorname{Pr}\left[U_{1}\right]+\operatorname{Pr}\left[U_{2} \mid B_{1}\right] \operatorname{Pr}\left[B_{1}\right]$.
Hence, $\operatorname{Pr}\left[U_{2}\right]=(0.8)(0.8)+(0.6)(0.2)=0.76$, and $\operatorname{Pr}\left[U_{3}\right]=(0.8)(0.76)+(0.6)(0.24)=0.752$.

Simpson's Paradox

In 1973, there was a lawsuit against a university with the claim that a male candidate is more likely to be admitted to the university than a female.

Let us consider a simplified case - there are two departments, EE and CS, and men and women apply to the program of their choice. Let us define the following events: A is the event that the candidate is admitted to the program of their choice, F_{E} is the event that the candidate is a woman applying to EE, F_{C} is the event that the candidate is a woman applying to CS. Similarly, we can define M_{E} and M_{C}. Assumption: Candidates are either men or women, and that no candidate is allowed to be part of both EE and CS.

Lawsuit claim: Male candidate is more likely to be admitted to the university than a female i.e. $\operatorname{Pr}\left[A \mid M_{E} \cup M_{C}\right]>\operatorname{Pr}\left[A \mid F_{E} \cup F_{C}\right]$.

University response: In any given department, a male applicant is less likely to be admitted than a female i.e. $\operatorname{Pr}\left[A \mid F_{E}\right]>\operatorname{Pr}\left[A \mid M_{E}\right]$ and $\operatorname{Pr}\left[A \mid F_{C}\right]>\operatorname{Pr}\left[A \mid M_{C}\right]$.
Simpson's Paradox: Both the above statements can be simultaneously true.

Simpson's Paradox

CS	2 men admitted out of 5 candidates	40%
	50 women admitted out of 100 candidates	50%
EE	70 men admitted out of 100 candidates	70%
	4 women admitted out of 5 candidates	80%
Overall	72 men admitted, 105 candidates	$\approx 69 \%$
	54 women admitted, 105 candidates	$\approx 51 \%$

In the above example, $\operatorname{Pr}\left[A \mid F_{E}\right]=0.8>0.7=\operatorname{Pr}\left[A \mid M_{E}\right]$ and $\operatorname{Pr}\left[A \mid F_{C}\right]=0.5>0.4=\operatorname{Pr}\left[A \mid M_{C}\right]$. $\operatorname{Pr}\left[A \mid F_{E} \cup F_{C}\right] \approx 0.51$. Similarly, $\operatorname{Pr}\left[A \mid M_{E} \cup M_{C}\right] \approx 0.69$.
In general, Simpson's Paradox occurs when multiple small groups of data all exhibit a similar trend, but that trend reverses when those groups are aggregated.

Questions?

