CMPT 210: Probability and Computing

Lecture 5

Sharan Vaswani
January 19, 2023

Recap - Introduction to Probability

Sample (outcome) space \mathcal{S} : Nonempty (countable) set of possible outcomes. Example: When we threw one dice, the sample space is $\{1,2,3,4,5,6\}$.

Outcome $\omega \in \mathcal{S}$: Possible "thing" that can happen. Example: When we threw one dice, a possible outcome is $\omega=1$.

Event E : Any subset of the sample space. Example: When we threw one dice, a possible event is $E=\{6\}$ (first example) or $E=\{3,6\}$ (second example).

An event E "happens" if the outcome ω (from some process) is in set E i.e. if $\omega \in E$.

Recap - Introduction to Probability

Union: For events $E, F, G=E \cup F=\{\omega \mid \omega \in E$ OR $\omega \in F\}$. G happens when at least one of the events E or F happen.

Intersection: For events $E, F, G=E \cap F=\{\omega \mid \omega \in E$ AND $\omega \in F\}$. G happens when both events E and F happen.

Mutually exclusive events: If $E \cap F=\{ \}$, then events E and F are mutually exclusive.
Complement of an event: The complement of an event E is E^{c} such that $E \cap E^{c}=\{ \}$ and $E \cup E^{c}=\mathcal{S}$. Event E^{c} will occur if and only if event E does not occur.

Subset: If $E \subset F$, then if E happens F will happen.

Axioms of Probability

Probability function on a sample space \mathcal{S} is a total function $\operatorname{Pr}: \mathcal{S} \rightarrow[0,1]$.
For any $\omega \in \mathcal{S}, 0 \leq \operatorname{Pr}[\omega] \leq 1 \quad ; \quad \sum_{\omega \in \mathcal{S}} \operatorname{Pr}[\omega]=1$
Probability space: The outcome space \mathcal{S} together with the probability function.
Recall that we can define functions on sets. In this case, for an event $E, \operatorname{Pr}[E]=\sum_{\omega \in E} \operatorname{Pr}[\omega]$.
Union: For mutually exclusive events $E_{1}, E_{2}, \ldots, E_{n}$ (sets $E_{1}, E_{2}, \ldots, E_{n}$ are disjoint),
$\operatorname{Pr}\left[E_{1} \cup E_{2} \cup \ldots E_{n}\right]=\operatorname{Pr}\left[E_{1}\right]+\operatorname{Pr}\left[E_{2}\right]+\ldots+\operatorname{Pr}\left[E_{n}\right]$.
Proof:

$$
\operatorname{Pr}\left[E_{1} \cup E_{2} \cup \ldots E_{n}\right]=\sum_{\omega \in\left\{E_{1} \cup E_{2} \cup \ldots E_{n}\right\}} \operatorname{Pr}[\omega]
$$

Since E_{i} 's are disjoint, any ω can only be in one of $E_{1}, E_{2}, \ldots E_{n}$

$$
=\sum_{\omega \in E_{1}} \operatorname{Pr}[\omega]+\sum_{\omega \in E_{2}} \operatorname{Pr}[\omega]+\ldots+\sum_{\omega \in E_{n}} \operatorname{Pr}[\omega]=\operatorname{Pr}\left[E_{1}\right]+\operatorname{Pr}\left[E_{2}\right]+\ldots+\operatorname{Pr}\left[E_{n}\right] .
$$

Back to throwing dice

Q: Suppose we throw a standard dice. What is the probability that the number that comes up is 6 ?
$\mathcal{S}=\{1,2,3,4,5,6\}$. Since the dice is "standard", each outcome is equally likely, i.e. $\operatorname{Pr}[\{1\}]=\operatorname{Pr}[\{2\}]=\ldots=\operatorname{Pr}[\{6\}]$.
Since $\operatorname{Pr}[\mathcal{S}]=1 \Longrightarrow \sum_{\omega \in \mathcal{S}} \operatorname{Pr}[\omega]=1 \Longrightarrow[\operatorname{Pr}[\{1\}]+\operatorname{Pr}[\{2\}]+\ldots \operatorname{Pr}[\{6\}]]=1$
$\Longrightarrow \operatorname{Pr}[\{6\}]=\frac{1}{6}$.

Back to throwing dice

Q: Suppose we throw a standard dice. What is the probability that we get either a 3 or a 6 ? $E=\{3\}, F=\{6\}, G=\{3,6\}$. Since $E \cap F=\{ \}, E$ and F are mutually exclusive events, implying that $\operatorname{Pr}[G]=\operatorname{Pr}[E]+\operatorname{Pr}[F]=\operatorname{Pr}[\{3\}]+\operatorname{Pr}[\{6\}]=\frac{1}{6}+\frac{1}{6}=\frac{1}{3}$.
Hence, probability of getting either a 3 or a 6 is equal to $\frac{1}{3}$.
Q: Compute the probability of getting either 1,2 or 3 .
Ans: $\frac{1}{2}$
Q: Compute the probability of getting an even number.
Ans: $\frac{1}{2}$
Q: Compute the probability of getting either $1,2,3,4,5,6$
Ans: 1

Probability Rules

Complement rule: $\operatorname{Pr}[E]=1-\operatorname{Pr}\left[E^{c}\right]$.
Proof: Recall that $E \cap E^{c}=\{ \}$ and $E \cup E^{c}=\mathcal{S}$. Since E and E^{c} are disjoint,

$$
\operatorname{Pr}\left[E \cup E^{c}\right]=\operatorname{Pr}[E]+\operatorname{Pr}\left[E^{c}\right] \Longrightarrow \operatorname{Pr}[S]=\operatorname{Pr}[E]+\operatorname{Pr}\left[E^{c}\right] \Longrightarrow \operatorname{Pr}\left[E^{c}\right] \quad=1-\operatorname{Pr}[E]
$$

Inclusion-Exclusion rule: For any two events $E, F, \operatorname{Pr}[E \cup F]=\operatorname{Pr}[E]+\operatorname{Pr}[F]-\operatorname{Pr}[E \cap F]$.
Proof:

$$
\operatorname{Pr}[E \cup F]=\sum_{\omega \in\{E \cup F\}} \operatorname{Pr}[\omega]=\sum_{\omega \in\{E-F\}} \operatorname{Pr}[\omega]+\sum_{\omega \in\{F-E\}} \operatorname{Pr}[\omega]+\sum_{\omega \in\{E \cap F\}} \operatorname{Pr}[\omega]
$$

(Since disjoint)

$$
\begin{aligned}
& \left.=\sum_{\omega \in\{E-F\}} \operatorname{Pr}[\omega]+\sum_{\omega \in\{E \cap F\}} \operatorname{Pr}[\omega]\right]+\left[\sum_{\omega \in\{F-E\}} \operatorname{Pr}[\omega]+\sum_{\omega \in\{E \cap F\}} \operatorname{Pr}[\omega]\right]-\sum_{\omega \in\{E \cap F\}} \operatorname{Pr}[\omega] \\
& =\sum_{\omega \in E} \operatorname{Pr}[\omega]+\sum_{\omega \in F} \operatorname{Pr}[\omega]-\sum_{\omega \in\{E \cap F\}} \operatorname{Pr}[\omega]=\operatorname{Pr}[E]+\operatorname{Pr}[F]-\operatorname{Pr}[E \cap F]
\end{aligned}
$$

Probability Rules

Union Bound: For any two events $E, F, \operatorname{Pr}[E \cup F] \leq \operatorname{Pr}[E]+\operatorname{Pr}[F]$.
Proof: By the inclusion-exclusion rule, $\operatorname{Pr}[E \cup F]=\operatorname{Pr}[E]+\operatorname{Pr}[F]-\operatorname{Pr}[E \cap F]$. Since probabilities are non-negative, $\operatorname{Pr}[E \cap F] \geq 0$ and hence, $\operatorname{Pr}[E \cup F] \leq \operatorname{Pr}[E]+\operatorname{Pr}[F]$.
Union Bound: For any events $E_{1}, E_{2}, E_{3}, \ldots E_{n}$,

$$
\operatorname{Pr}\left[E_{1} \cup E_{2} \cup E_{3} \ldots \cup E_{n}\right] \leq \sum_{i=1}^{n} \operatorname{Pr}\left[E_{i}\right]
$$

Monotonicity rule: For events A and B, if $A \subset B$, then $\operatorname{Pr}[A]<\operatorname{Pr}[B]$.
Proof:

$$
\operatorname{Pr}[A]=\sum_{\omega \in A} \operatorname{Pr}[\omega]=\sum_{\omega \in B} \operatorname{Pr}[\omega]-\sum_{\omega \in\{B-A\}} \operatorname{Pr}[\omega] \Longrightarrow \operatorname{Pr}[A]<\operatorname{Pr}[B]
$$

(Since probabilities are non-negative.)

Uniform Probability Spaces

Definition: A probability space is uniform if $\operatorname{Pr}[\omega]$ is the same for every outcome $\omega \in \mathcal{S}$.
Since $\sum_{\omega \in \mathcal{S}} \operatorname{Pr}[\omega]=1 \Longrightarrow \operatorname{Pr}[\omega]=\frac{1}{|\mathcal{S}|}$ for all $\omega \in \mathcal{S}$.
Example: For a standard dice, $\mathcal{S}=\{1,2,3,4,5,6\}, \operatorname{Pr}[\{1\}]=\operatorname{Pr}[\{2\}]=\ldots=\operatorname{Pr}[\{6\}]=1 / 6$.
$\operatorname{Pr}[E]=\sum_{\omega \in E} \operatorname{Pr}[\omega]=|E| \operatorname{Pr}[\omega]=\frac{|E|}{|\mathcal{S}|}$.
Example: For a standard dice, if $E=\{3,6\}$, then, $\operatorname{Pr}[E]=\frac{|E|}{|\mathcal{S}|}=\frac{2}{6}=1 / 3$.
Hence, for uniform probability spaces, computing the probability is equivalent to counting the outcomes we "care" about.

Back to throwing dice

Q: Suppose we have a loaded (not "standard") dice such that the probability of getting an even number is twice that of getting an odd number (all even numbers are equally likely, and so are the odd numbers). What is the probability of getting a 6 ?

Let p be the probability of getting an odd number. Probability of getting an even number $=2 p$. $\sum_{\omega \in \mathcal{S}} \operatorname{Pr}[\omega]=1 \Longrightarrow 3 p+3(2 p)=1 \Longrightarrow p=\frac{1}{9}$. Hence, probability of getting an odd number $=\frac{1}{9}$. Probability of getting a $6=$ Probability of getting an even number $=\frac{2}{9}$.
Q: What is the probability that we get either a 3 or a 6 ? Ans: $\frac{1}{9}+\frac{2}{9}=\frac{1}{3}$
Q: What is the probability that we get a prime number Ans: $\frac{2}{9}+\frac{1}{9}+\frac{1}{9}=\frac{4}{9}$

Questions?

Probability Examples

Q: Suppose we select a card at random from a standard deck of 52 cards. What is the probability of getting:

- A spade Ans: $\frac{1}{4}$
- A spade facecard Ans: $\frac{3}{52}$
- A black card Ans: $\frac{1}{2}$
- The queen of hearts Ans: $\frac{1}{52}$
- An ace Ans: $\frac{1}{13}$

Probability Examples

Q: A class consists of 6 men and 4 women. An exam is given and the students are ranked according to their performance. Assuming that no two students obtain the same scores and all rankings are considered equally likely, what is the probability that women receive the top 4 scores?

In general, let the number of men be m and let the number of women be w.
Number of possible rankings $=$ Number of permutations $=(m+w)!$.
The event of interest is that where the women achieve the top scores. In a possible ranking, let's fix the top w slots for women. The w women can be arranged in $w!$ ways. And the m men can be arranged in m ! ways. Hence, total number of rankings where women receive the top scores $=$ $m!w!$.

Since all rankings are equally likely, probability that women receive the top w scores $=\frac{m!w!}{(m+w)!}$. In this case, since $m=6$ and $w=4$, probability that women receive the top 4 scores $=\frac{6!4!}{10!}$.

Probability Examples

Q: A class consists of m men and w women. An exam is given and the students are ranked according to their performance. Assuming that no two students obtain the same scores and all rankings are considered equally likely, what is probability that women receive the top $t(t \leq w)$ scores?
Number of ways to select the t women that have top scores $=\binom{w}{t}$. The top t women can be arranged in t ! ways. The number of remaining students is equal to $m+w-t$. These can be arranged in $(m+w-t)$! ways. Hence, total number of rankings where women receive the top t scores $=\binom{w}{t} \quad(m+w-t)!\quad t!$.
As before, the total number of rankings $=(m+w)$!. Since all rankings are equally likely, the probability that women receive the top t scores $=\frac{\binom{w}{t}(m+w-t)!t!}{(m+w)!}=\frac{w!(m+w-t)!}{(w-t)!(m+w)!}$

Probability Examples

Q: A committee of size 5 is to be selected from a group of 6 CS and 9 Math students (no double majors allowed). If the selection is made randomly, what is the probability that the committee consists of 3 CS and 2 Math students?
Number of possible ways of selecting the committee $=|\mathcal{S}|=\binom{15}{5}$.
The event of interest (E) requires choosing 3 CS and 2 Math students. Number of ways we can select the CS students $=\binom{6}{3}$. Similarly, number of ways we can select the Math students $=\binom{9}{2}$. Hence, $|E|=\binom{6}{3}\binom{9}{2} \Longrightarrow \operatorname{Pr}[E]=\frac{|E|}{|\mathcal{S}|}=\frac{\binom{6}{3}\binom{9}{2}}{\binom{15}{5}}$.

Probability Examples

Q: From a set of n items a random sample of size k is to be selected. What is the probability a given item (α) will be among the k selected items?
Number of ways of choosing the sample $=\binom{n}{k}$.
If we want a particular item in the sample, number of ways of choosing the other items $=\binom{n-1}{k-1}$. Hence, probability that a given item will be among the k selected $=\frac{\binom{n-1}{k}}{\binom{n}{k}}=\frac{k}{n}$.

