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Logistics

Assignment 1 is out on Piazza. Due Friday 20 January in class.

For some flexibility, each student is allowed 1 late-submission (use it judiciously to cover a more
hectic time of the semester).

For A1, you can use your late-submission and submit on Monday, 23 January in the Tutorial
session.

If you have questions about the assignment or anything else, post it on Piazza:
https://piazza.com/sfu.ca/spring2023/cmpt210/home
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Recap

Binomial Theorem: For all n ∈ N and a, b ∈ R, (a+ b)n =
∑n

k=0

(
n
k

)
an−kbk .

Splitting a set: A (k1, k2, . . . , km)-split of set A is a sequence of sets (A1,A2, . . .Am) s.t. sets
Ai form a partition (A1 ∪ A2 ∪ . . . = A and for i ̸= j , Ai ∩ Aj = ∅) and |Ai | = ki .

Number of ways to obtain an (k1, k2, . . . , km) split of A with |A| = n is
(

n
k1,k2,...km

)
= n!

k1! k2! ...km!

where
∑

i ki = n.(E.g. Number of permutations of BOOKKEEPER = 10!
2! 2! 3! )

Multinomial Theorem: For all m, n ∈ N and z1, z2, . . . zm ∈ R,
(z1 + z2 + . . .+ zm)

n =
∑

k1,k2,...,km
k1+k2+...km=n

(
n

k1,k2,...,km

)
zk1
1 zk2

2 . . . zkmm , where(
n

k1,k2,...,km

)
= n!

k1!k2!...km!
.

Inclusion-Exclusion: For three sets A, B and C ,
|A ∪ B ∪ C | = |A|+ |B|+ |C | − |A ∩ B| − |B ∩ C | − |A ∩ C |+ |A ∩ B ∩ C |
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Combinatorial Proofs

Recall that if we have to choose k elements out of a size n set. Number of ways to do this is
(
n
k

)
.

But this is equivalent to saying, we want to find the number of ways to throw away n − k

elements =
(

n
n−k

)
. Hence,

(
n
k

)
=

(
n

n−k

)
. Can prove algebraic statements using combinatorial

arguments.

Q: Prove Pascal’s identity using a combinatorial proof:
(
n
k

)
=

(
n−1
k−1

)
+
(
n−1
k

)
Consider n students in this class. What is the number of ways of selecting k students?

(
n
k

)
.

What is the number of ways of selecting k students if we have to ensure to include a particular
student?

(
n−1
k−1

)
.

What is the number of ways of selecting k students if we have to ensure to NOT include a
particular student?

(
n−1
k

)
.

Number of ways to select k students = number of ways of selecting k students to include a
particular student + number of ways of selecting k students to NOT include a particular student.
Hence,

(
n
k

)
=

(
n−1
k−1

)
+
(
n−1
k

)
.
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Counting Practice

Q: How many ways can I select 5 toppings for my pizza if there are 14 available toppings? What
is the total number of different pizzas I can make?

Ans:
(14

5

)
, 214.

Q: How many different solutions over N are there to the following equation: x1 + x2 + x3 = 100

Ans: There is a bijection between the solutions to the above problem and strings of the form
00001000100000 such that the number of zeros = 100, number of ones = 2 (corresponding to
when the number changes). Hence we want to find the number of binary 102-bit strings with
exactly 2 ones. Recall that this is equal to the number of ways of choosing a size 2 subset from a
size 102 set =

(102
2

)
.
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Counting Practice

Q: In how many ways can we place (i) two identical black rooks (ii) a black rook and a white
rook such that they do not share the same row or column?

Ans: The first rook can occupy 8 × 8 positions. After selecting the first rook, the number of
valid remaining positions = 7 × 7. Since two positions are equivalent (because these are two
identical rooks), by the division rule, total number of ways to place the rooks = 82 72

2 = 32 × 49.

Ans: Same as before but since the two rooks are different, we are not double-counting. Hence,
the number of ways = 64 × 49. 5



Questions?
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Pigeonhole principle

Q: A drawer in a dark room contains red socks, green socks, and blue socks. How many socks
must you withdraw to be sure that you have a matching pair?

Such problems can be tackled using the Pigeonhole principle.

Pigeonhole Principle: If there are more pigeons than holes they occupy, then there must be at
least two pigeons in the same hole.

Formally, if |A| > |B|, then for every total function (one that has an assignment for every
element in A), f : A → B, there exist two different elements of A that are mapped by f to the
same element of B.

For the above problem, A = set of socks we picked = pigeons, B = set of colors {red, blue,
green} = pigeonholes. |A| = number of socks we picked. |B| = 3. f : A → B s.t. f (sock we
picked) = it’s color.

If there are more pigeons than holes (picked socks than colors), then at least two pigeons will be
in the same hole (two of the picked socks will have the same color, and we get a matching pair).
Hence, to ensure a matching pair, we need to pick 4 socks. 6



Pigeonhole principle - Example

Q: A class has 54 students. Prove that there exist at least 2 students with their birthday in the
same week.

Ans: 54 students = pigeons. 52 weeks = pigeonholes.

Q: In the set of integers {1, 2, . . . , 100}, use the pigeonhole principle to prove that there exist
two numbers whose difference is a multiple of 41.

Ans: {1, 2, . . . , 100} = pigeons, {0, 1, 2, . . . 40} = holes, f : {1, 2, . . . , 100} → {0, 1, 2, . . . 40}
s.t. f (n) = n mod 41 i.e. f (n) returns the remainder after dividing by 41. Since |pigeons| >
|holes|, there exist 2 numbers a, b that have the same remainder after dividing by 41. Let the
remainder by r , then a = 41m1 + r and b = 41m2 + r where m1, m2 are integers.
a− b = 41(m1 −m2). Hence, a− b is a multiple of 41.

7



Pigeonhole principle - Example

A kind of problem that arises in cryptography is to find different subsets of numbers with the
same sum. For example, in this list of 25-digit numbers, find a subset of numbers that have the
same sum. For example, maybe the sum of the last ten numbers in the first column is equal to
the sum of the first eleven numbers in the second column.

This is a hard problem which is why it is used in cryptography. The first step to figure out is
whether there even exists such a subset of numbers. We can do this using the pigeonhole
principle!
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Pigeonhole principle - Example

Q: More generally, in a list of n b-digit numbers, are there two different subsets of numbers that
have the same sum?

Let A = set of all subsets of the n numbers. For example, if b = 3, an element of A is
{113, 221, 42}. |A| = 2n

Let B be the set of possible sums of such subsets. f is a function that maps each subset to its
corresponding sum. For example, if b = 3, f ({113, 221}) = 334.

Let us compute |B|. For any list of n numbers, Minimum possible sum = 0. Max possible sum <
10b × n. For example, if b = 3 and n = 5, then the maximum possible sum =
999 × 5 < 1000 × 5. Hence, |B| < 10b × n.

By the pigeonhole principle, there exist different subsets with the same sum if |A| > |B| i.e. if
2n > 10b × n.

For b = 3, this is possible if 2n > 1000n, meaning this is possible if n log(2) > 3 + log(n) (since
log is a monotonic function) Let’s plot.
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Pigeonhole - Example

Hence, it is possible when n > 15. Similarly, for a general b, there exist different subsets with the
same sum if n log(2) > b + log(n).
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Questions?
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Introduction to Probability - Throwing dice

Q: Suppose we throw a standard dice. What is the probability that the number that comes up is
6?

What are the possible things that can happen? The dice comes up one of the numbers in
1, 2, 3, 4, 5, 6.

What are the things that we care about? Getting a 6.

In how many ways can this happen? Just one.

Probability of getting a 6 = Number of ways in which the thing we care about happens
Total number of ways in which something can happen = 1

6 .
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Introduction to Probability - Throwing dice

Q: Suppose we throw a standard dice. What is the probability that we get either a 3 or a 6?

What are the possible outcomes that can happen? The dice comes up one of the numbers in
1, 2, 3, 4, 5, 6.

What is the event that we care about? Getting either a 3 or 6.

In how many ways can this event happen? Two (the dice comes 3 or 6).

Probability of getting either a 3 or a 6 = Number of ways in which the event we care about happens
Total number of outcomes = 2

6 .
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Introduction to Probability - Throwing dice

Q: Suppose we throw two standard dice one after the other. What is the probability that we get
two 6’s in a row?

What are the possible outcomes that can happen? The first dice comes up one of the numbers in
1, 2, 3, 4, 5, 6, the second dice comes up one of the numbers in 1, 2, 3, 4, 5, 6.

If we consider both dice together, what are the possible outcomes – first dice is 1, second dice is
1; first is 1, second is 2, and so on. Let us write this compactly. The space of outcomes is
(1, 1), (1, 2), (1, 3), . . . , (6, 6).

What is the size of this outcome space? 36 (By the product rule)

What is the event that we care about? Getting (6, 6).

In how many ways can this happen? One (both die need to come up 6).

Probability of getting two 6’s in a row = Number of ways in which the event we care about happens
|outcome space| = 1

36 .
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Questions?
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Probability Basics

Sample (outcome) space S: Nonempty (countable) set of possible outcomes. Example: When
we threw one dice, the sample space is {1, 2, 3, 4, 5, 6}. When we threw two die, the sample
space is {(1, 1), (1, 2), (1, 3), . . .} = {1, 2, 3, 4, 5, 6} × {1, 2, 3, 4, 5, 6} (using the relation between
sets and sequences).

The sample space is not necessarily numbers. Example: If we are randomly choosing colors from
the rainbow, then S = {violet, indigo, blue, green, yellow, orange, red}.

Outcome ω ∈ S: Possible “thing” that can happen. Example: When we threw one dice, a
possible outcome is ω = 1. For the rainbow example, the color “red” is a possible outcome.

Event E : Any subset of the sample space. Example: When we threw one dice, a possible event
is E = {6} (first example) or E = {3, 6} (second example). When we threw two die, a possible
event is E = {(6, 6)}.

An event E “happens” if the outcome ω (from some process) is in set E i.e. if ω ∈ E .
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Union of events

Since the event E is a set, all the set theory we learned is useful!

Suppose E ,F are two events in S. Define the union E ∪ F to consist of outcomes that are either
in E or F (this is just the definition of the union of two sets). Formally,

G = E ∪ F = {ω|ω ∈ E OR ω ∈ F}.

Another way to interpret this is to say event G occurs if either event E or event F occurs.

Example: We considered the case where we threw one dice and cared about getting either 3 or 6.
In this case, event G happens if we get either 3 or 6. Formally, E = {3}, F = {6},
G = E ∪ F = {3, 6}. And G occurs when the number that shows up is either 3 or 6.

Can define union between more than two events in the same way we defined union between more
than two sets. G = E1 ∪ E2 ∪ . . .En. G happens when at least one of the events Ei happen.
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Intersection of events

Suppose E ,F are two events in S. Define the intersection E ∩ F to consist of outcomes that are
in both E and F (this is just the definition of the intersection of two sets). Formally,

G = E ∩ F = {ω|ω ∈ E AND ω ∈ F}

.

Another way to interpret this is to say event G occurs if both events E and F occur.

Example: We threw two dice and cared about getting 6 in the first throw and 6 in the second
throw. In this case, E is the event we get a 6 for the first dice.
E = {(6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6)}, F is the event we get a 6 for the second dice.
F = {(1, 6), (2, 6), (3, 6), (4, 6), (5, 6), (6, 6)},G = E ∩ F = {(6, 6)}. G happens when both E

and F happen i.e. the first dice has a 6 and the second dice has 6.

Can define intersection between more than two events in the same way we defined intersection
between more than two sets. G = E1 ∩ E2 ∩ . . .En. G happens when all of the events Ei happen.
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Mutually exclusive and complement events

Mutually exclusive events: If E and F are two events such that E ∩ F = {}, then events E

and F are mutually exclusive.

Example: We threw one dice and want to get both 3 and 6. This is not possible. Formally,
E = {3}, F = {6} and E ∩ F = {}, hence, events E and F are mutually exclusive.

Complement of an event: If E is an event, then its complement E c is defined such that
E ∩ E c = {} and E ∪ E c = S. Event E c will occur if and only if event E does not occur.

Example: We threw one dice and want to get a 6 i.e. we define E = {6}. E c = {1, 2, 3, 4, 5}.

Two complement events are mutually exclusive, but two mutually exclusive events need not be
the complements of each other. Example: E and F are are mutually exclusive, but not
complements.

Subset: If E ⊂ F , then if E happens F will happen. Example: When we throw one dice, if
E = {3} and F = {1, 2, 3} i.e. E is the event that we get 3 and F is the event that we can
either 1, 2, 3. Clearly, if E happens, F will happen.
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Questions?
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