CMPT 210: Probability and Computing

Lecture 3

Sharan Vaswani
January 12, 2023

Recap - Counting

Product Rule: For sets $A_{1}, A_{2} \ldots, A_{m},\left|A_{1} \times A_{2} \times \ldots \times A_{m}\right|=\prod_{i=1}^{m}\left|A_{i}\right|$ (E.g: Selecting one course each from every subject.)

Sum rule: If $A_{1}, A_{2} \ldots A_{m}$ are disjoint sets, then, $\left|A_{1} \cup A_{2} \cup \ldots \cup A_{m}\right|=\sum_{i=1}^{m}\left|A_{i}\right|$ (E.g Number of rainy, snowy or hot days in the year).

Generalized product rule: If S is the set of length k sequences such that the first entry can be selected in n_{1} ways, after the first entry is chosen, the second one can be chosen in n_{2} ways, and so on, then $|S|=n_{1} \times n_{2} \times \ldots n_{k}$. (E.g Number of ways n people can be arranged in a line $=n!$)

Division rule: $f: A \rightarrow B$ is a k-to- 1 function, then, $|A|=k|B|$. (E.g. For arranging people around a round table, $f:$ seatings \rightarrow arrangements is an n-to- 1 function).
Number of ways of choosing size k-subsets from a size n-set: $\binom{n}{k}$ (E.g. Number of n-bit sequences with exactly k ones).

Counting subsets - Example

Q: How many m-bit binary sequences contain exactly k ones?
Consider set $A=\{1,2, \ldots, m\}$ and selecting S, a subset of size k. For example, say $m=10, k=3$ and $S=\{10,3,7\}$, then S records the positions of the 1 's, and can mapped to the sequence 0010001001 . Similarly, every m-bit sequence with exactly k ones can be mapped to a subset of size k. Hence, there is a bijection:
$f: m$-bit sequence with exactly k ones \rightarrow subsets of size k from size m-set, and $\mid m$-bit sequence with exactly k ones $|=|$ subsets of size $k \left\lvert\,=\binom{m}{k}\right.$.
Q: Suppose we want to buy 10 donuts. There are 5 donut varieties - chocolate, lemon-filled, sugar, glazed, plain. What is the number of ways to select the 10 donuts?

Recall that the number of ways of selecting 10 donuts with 5 varieties $=$ number of 14 -bit sequences with exactly 4 ones $=\binom{14}{4}=1001$.
Q: What is the number of ways of choosing n things with k varieties?
Ans: Equal to the number of $n+k-1$-bit sequences with exactly $k-1$ ones $=\binom{n+k-1}{k-1}$.

Counting subsets - Example

Q: What is the number of n-bit binary sequences with at least k ones?
Ans: Set of n-bit binary sequences with at least k ones $=n$-bit binary sequences with exactly k ones $\cup n$-bit binary sequences with exactly $k+1$ ones $\cup \ldots \cup n$-bit binary sequences with exactly n ones. By the sum rule for disjoint sets, number of n-bit binary sequences with at least k ones $=\sum_{i=k}^{n}\binom{n}{i}$.
Q: What is the number of n-bit binary sequences with less than k ones?
Ans: $\sum_{i=0}^{k-1}\binom{n}{i}$
Q: What is the total number of n-bit binary sequences?
Ans: 2^{n}
Total number of n-bit binary sequences $=$ number of n-bit binary sequences with at least k ones + number of n-bit binary sequences with less than k ones.
Combining the above answers, we can conclude that, $\sum_{k=0}^{n}\binom{n}{k}=2^{n}$. Have recovered a special case of the binomial theorem!

Binomial Theorem

For all $n \in \mathbb{N}$ and $a, b \in \mathbb{R}$,

$$
(a+b)^{n}=\sum_{k=0}^{n}\binom{n}{k} a^{n-k} b^{k}
$$

Example: If $a=b=1$, then $\sum_{k=0}^{n}\binom{n}{k}=2^{n}$ (result from previous slide).
If $n=2$, then $(a+b)^{2}=\binom{2}{0} a^{2}+\binom{2}{1} a b+\binom{2}{2} b^{2}=a^{2}+2 a b+b^{2}$.
Q: What is the coefficient of the terms with $a b^{3}$ and $a^{2} b^{3}$ in $(a+b)^{4}$? Ans: $\binom{4}{1}=\binom{4}{3}, 0$.
Q: For $a, b>0$, what is the coefficient of $a^{2 n-7} b^{7}$ and $a^{2 n-8} b^{8}$ in $(a+b)^{2 n}+(a-b)^{2 n}$?
Ans: $(a+b)^{2 n}=\sum_{k=0}^{2 n}\binom{2 n}{k} a^{2 n-k} b^{k}$,
$(a-b)^{2 n}=-\sum_{k=0}^{2 n}\binom{2 n}{k} a^{2 n-k} b^{k} \mathcal{I}\{\mathrm{k}$ is odd $\}+\sum_{k=0}^{2 n}\binom{2 n}{k} a^{2 n-k} b^{k} \mathcal{I}\{\mathrm{k}$ is even $\}$.
$(a+b)^{2 n}+(a-b)^{2 n}=2 \sum_{k=0}^{2 n}\binom{2 n}{k} a^{2 n-k} b^{k} \mathcal{I}\{k$ is even $\}$. Hence, coefficient of $a^{2 n-7} b^{7}=0$, coefficient of $a^{2 n-8} b^{8}=2\binom{(2 n}{8}$.

Questions?

Generalization to Multinomials

We saw how to split a set into two subsets - one that contains some elements, while the other does not. Can generalize the arguments to split a set into more than two subsets.

A $\left(k_{1}, k_{2}, \ldots, k_{m}\right)$-split of set A is a sequence of sets $\left(A_{1}, A_{2}, \ldots A_{m}\right)$ s.t. sets A_{i} form a partition $\left(A_{1} \cup A_{2} \cup \ldots=A\right.$ and for $\left.i \neq j, A_{i} \cap A_{j}=\emptyset\right)$ and $\left|A_{i}\right|=k_{i}$.
An example of a $(2,1,3)$-split of $A=\{1,2,3,4,5,6\}$ is $(\{2,4\},\{1\},\{3,5,6\})$. Here, $m=3$, $A_{1}=\{2,4\}, A_{2}=\{1\}, A_{3}=\{3,5,6\}$ s.t. $\left|A_{1}\right|=2,\left|A_{2}\right|=1,\left|A_{3}\right|=3, A_{1} \cup A_{2} \cup A_{3}=A$ and for $i \neq j, A_{i} \cap A_{j}=\emptyset$.
Example: Consider strings of length 6 of a 's, b's and c 's such that number of a's $=2$; number of b 's $=1$ and number of c 's $=3$. Possible strings: abaccc, ccbaac, bacacc, cbacac.

Each possible string, e.g. bacacc can be written as a (2, 1, 3)-split of $A=\{1,2,3,4,5,6\}$ as $(\{2,4\},\{1\},\{3,5,6\})$ where A_{1} records the positions of a, A_{2} records the positions of b and A_{3} records the positions of c.

Generalization to Multinomials

Q: Show that the number of ways to obtain an $\left(k_{1}, k_{2}, \ldots, k_{m}\right)$ split of A with $|A|=n$ is $\binom{n}{k_{1}, k_{2}, \ldots k_{m}}=\frac{n!}{k_{1}!k_{2}!\ldots k_{m}!}$ where $\sum_{i} k_{i}=n$.
Can map any permutation $\left(a_{1}, a_{2}, \ldots a_{n}\right)$ into a split by selecting the first k_{1} elements to form set A_{1}, next k_{2} to form set A_{2} and so on. For the same split, the order of the elements in each subset does not matter. Hence $f:$ number of permutations \rightarrow number of splits is a $k_{1}!k_{2}$! $\ldots k_{m}$!-to-1 function.
Hence, |number of splits $\left\lvert\,=\frac{\text { number of permutations } \mid}{k_{1}!k_{2}!\ldots k_{m}!}=\frac{n!}{k_{1}!k_{2}!\ldots k_{m}!}\right.$.

Generalization to Multinomials - Example

Q: Count the number of permutations of the letters in the word BOOKKEEPER.
We want to count sequences of the form ($1 E, 1 P, 2 E, 1 B, 1 K, 1 R, 2 O, 1 K$) = EPEEBKROOK. There is a bijection between such sequences and $(1,2,2,3,1,1)$ split of $A=\{1,2, \ldots, 10\}$ where A_{1} is the set of positions of B 's, A_{2} is the set of positions of O 's, A_{3} is set of positions of K and so on.
For example, the above sequence maps to the following split: $(\{5\},\{8,9\},\{6,10\},\{1,3,4\},\{2\},\{7\})$
Hence, the total number of sequences that can be formed from the letters in BOOKKEEPER $=$ number of $(1,2,2,3,1,1)$ splits of $A=[10]=\{1,2, \ldots, 10\}=\frac{10!}{1!2!2!3!1!1!}$.
Q: Count the number of permutations of the letters in the word (i) ABBA (ii) $A_{1} B B A_{2}$ and (iii) $A_{1} B_{1} B_{2} A_{2}$? Ans: $6,12,24$

Generalization to Multinomials - Example

Q: Suppose we are planning a 20 km walk, which should include 5 northward $\mathrm{km}, 5$ eastward km , 5 southward km, and 5 westward km . We can move in steps of 1 km in any direction. For example, a valid walk is (NENWSNSSENSWWESWEENW) that corresponds to 1 km north followed by 1 km east and so on. How many different walks are possible?

Ans: The set $A=\{1,2, \ldots, 20\}$ needs to be split into 4 subsets N, S, E, W s.t.
$|N|=|S|=|E|=|W|=5$. Counting the number of walks = counting the number of sequences of the form $(3 N, 5 W, 4 S, 4 E, 2 N, 1 E, 1 S)=$ number of ways to obtain an $(5,5,5,5)$-split of set $\{1,2,3, \ldots 20\}$. The total number of walks $=\frac{20!}{(5!)^{4}}$.

Multinomial Theorem

For all $m, n \in \mathbb{N}$ and $z_{1}, z_{2}, \ldots z_{m} \in \mathbb{R}$,

$$
\left(z_{1}+z_{2}+\ldots+z_{m}\right)^{n}=\sum_{\substack{k_{1}, k_{2}, \ldots, k_{m} \\ k_{1}+k_{2}+\ldots k_{m}=n}}\binom{n}{k_{1}, k_{2}, \ldots, k_{m}} z_{1}^{k_{1}} z_{2}^{k_{2}} \ldots z_{m}^{k_{m}}
$$

where $\binom{n}{k_{1}, k_{2}, \ldots, k_{m}}=\frac{n!}{k_{1}!k_{2}!\ldots k_{m}!}$.
Example 1: If $m=2, k_{1}=k, k_{2}=n-k$ and $z_{1}=a, z_{2}=b$, recover the Binomial theorem.
Example 2: If $n=4, m=3$, then the coefficient of $a b c^{2}$ in $(a+b+c)^{4}$ is $\binom{4}{1,1,2}=\frac{4!}{1!1!2!}$.

Questions?

Inclusion-Exclusion Principle

Recall that if A, B, C are disjoint subsets, then, $|A \cup B \cup C|=|A|+|B|+|C|$ (this is the Sum rule from Lecture 1).
For two general sets $A, B,|A \cup B|=|A|+|B|-|A \cap B|$. The last term fixes the "double counting".
Similarly, $|A \cup B \cup C|=|A|+|B|+|C|-|A \cap B|-|B \cap C|-|A \cap C|+|A \cap B \cap C|$. In general,

$$
\begin{aligned}
&\left|\cup_{i=1,2, \ldots n} A_{i}\right|=\sum_{i}\left|A_{i}\right|-\sum_{i, j \text { s.t. }}=i \leq i<j \leq n \\
&\left|A_{i} \cap A_{j}\right|+\sum_{i, j, k \text { s.t. }} \sum_{1 \leq i<j<k \leq n}\left|A_{i} \cap A_{j} \cap A_{k}\right| \\
&+\ldots+(-1)^{n-1} \mid \cap i=1,2, \ldots n \\
& A_{i} \mid
\end{aligned}
$$

Inclusion-Exclusion Principle - Example

Q: Suppose there are 60 math majors, 200 EECS majors, and 40 physics majors. A student is allowed to double or even triple major. There are 4 math-EECS double majors, 3 math-physics double majors, 11 EECS-physics double majors and 2-triple majors. What is the total number of students across these three departments?

If M, E, P are the sets of Math, EECS and physics majors, then we wish to compute
$|M \cup E \cup P|=|M|+|E|+|P|-|M \cap E|-|M \cap P|-|E \cap P|+|M \cap E \cap P|=300-$ $|M \cap E|-|M \cap P|-|E \cap P|+|M \cap E \cap P|$.
$|M \cap E|=4+2=6,|M \cap P|=3+2=5,|P \cap E|=11+2=13 .|M \cap E \cap P|=2$
$|M \cup E \cup P|=300-6-5-13+2=278$.

Inclusion-Exclusion Principle - Example

Q: In how many permutations of the set $\{0,1,2, \ldots, 9\}$ do either 4 and 2,0 and 4 , or 6 and 0 appear consecutively? For example, in the following permutation 42067891235, 4 and 2 appear consecutively, but 6 and 0 do not (the order matters).

Let P_{42} be the set of sequences such that 4 and 2 appear consecutively. Similarly, we define P_{60} and P_{04}. So we want to compute

$$
\left|P_{42} \cup P_{60} \cup P_{04}\right|=\left|P_{42}\right|+\left|P_{60}\right|+\left|P_{04}\right|-\left|P_{42} \cap P_{60}\right|-\left|P_{42} \cap P_{04}\right|-\left|P_{60} \cap P_{04}\right|+\left|P_{42} \cap P_{60} \cap P_{04}\right| .
$$

Let us first compute $\left|P_{42}\right|=9$!. Similarly, $\left|P_{60}\right|=\left|P_{04}\right|=9$!.
What about intersections? $\left|P_{42} \cap P_{60}\right|=$ Number of sequences of the form $(42,60,1,3,5,7,8,9)=8$!. Similarly, $\left|P_{60} \cap P_{04}\right|=\left|P_{42} \cap P_{04}\right|=8!$.
$\left|P_{42} \cap P_{60} \cap P_{04}\right|=$ Number of sequences of the form $(6042,1,3,5,7,8,9)=7$!.
By the inclusion-exclusion principle, $\left|P_{42} \cup P_{60} \cup P_{04}\right|=3 \times 9!-3 \times 8!+7!$.

Questions?

