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Recap - Counting

Product Rule: For sets A1, A2 . . . ,Am, |A1 × A2 × . . .× Am| =
∏m

i=1 |Ai | (E.g: Selecting one
course each from every subject.)

Sum rule: If A1,A2 . . .Am are disjoint sets, then, |A1 ∪ A2 ∪ . . . ∪ Am| =
∑m

i=1 |Ai | (E.g
Number of rainy, snowy or hot days in the year).

Generalized product rule: If S is the set of length k sequences such that the first entry can be
selected in n1 ways, after the first entry is chosen, the second one can be chosen in n2 ways, and
so on, then |S | = n1 × n2 × . . . nk . (E.g Number of ways n people can be arranged in a line = n!)

Division rule: f : A → B is a k-to-1 function, then, |A| = k|B|. (E.g. For arranging people
around a round table, f : seatings → arrangements is an n-to-1 function).

Number of ways of choosing size k-subsets from a size n-set:
(
n
k

)
(E.g. Number of n-bit

sequences with exactly k ones).
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Counting subsets - Example

Q: How many m-bit binary sequences contain exactly k ones?

Consider set A = {1, 2, . . . ,m} and selecting S , a subset of size k . For example, say
m = 10, k = 3 and S = {10, 3, 7}, then S records the positions of the 1’s, and can mapped to
the sequence 001 0001 001. Similarly, every m-bit sequence with exactly k ones can be mapped
to a subset of size k . Hence, there is a bijection:
f : m-bit sequence with exactly k ones → subsets of size k from size m-set, and
|m-bit sequence with exactly k ones| = |subsets of size k| =

(
m
k

)
.

Q: Suppose we want to buy 10 donuts. There are 5 donut varieties – chocolate, lemon-filled,
sugar, glazed, plain. What is the number of ways to select the 10 donuts?

Recall that the number of ways of selecting 10 donuts with 5 varieties = number of 14-bit
sequences with exactly 4 ones =

(14
4

)
= 1001.

Q: What is the number of ways of choosing n things with k varieties?

Ans: Equal to the number of n + k − 1-bit sequences with exactly k − 1 ones =
(
n+k−1
k−1

)
.
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Counting subsets - Example

Q: What is the number of n-bit binary sequences with at least k ones?

Ans: Set of n-bit binary sequences with at least k ones = n-bit binary sequences with exactly k

ones ∪ n-bit binary sequences with exactly k + 1 ones ∪ . . .∪ n-bit binary sequences with exactly
n ones. By the sum rule for disjoint sets, number of n-bit binary sequences with at least k ones
=

∑n
i=k

(
n
i

)
.

Q: What is the number of n-bit binary sequences with less than k ones?

Ans:
∑k−1

i=0

(
n
i

)
Q: What is the total number of n-bit binary sequences?

Ans: 2n

Total number of n-bit binary sequences = number of n-bit binary sequences with at least k ones
+ number of n-bit binary sequences with less than k ones.
Combining the above answers, we can conclude that,

∑n
k=0

(
n
k

)
= 2n. Have recovered a special

case of the binomial theorem!
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Binomial Theorem

For all n ∈ N and a, b ∈ R,

(a+ b)n =
n∑

k=0

(
n

k

)
an−kbk

Example: If a = b = 1, then
∑n

k=0

(
n
k

)
= 2n (result from previous slide).

If n = 2, then (a+ b)2 =
(2
0

)
a2 +

(2
1

)
ab +

(2
2

)
b2 = a2 + 2ab + b2.

Q: What is the coefficient of the terms with ab3 and a2b3 in (a+ b)4? Ans:
(4
1

)
=

(4
3

)
, 0.

Q: For a, b > 0, what is the coefficient of a2n−7b7 and a2n−8b8 in (a+ b)2n + (a− b)2n?

Ans: (a+ b)2n =
∑2n

k=0

(2n
k

)
a2n−kbk ,

(a− b)2n = −
∑2n

k=0

(2n
k

)
a2n−kbk I{k is odd}+

∑2n
k=0

(2n
k

)
a2n−kbk I{k is even}.

(a+ b)2n + (a− b)2n = 2
∑2n

k=0

(2n
k

)
a2n−kbk I{k is even}. Hence, coefficient of a2n−7b7 = 0,

coefficient of a2n−8b8 = 2
(2n

8

)
.
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Questions?
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Generalization to Multinomials

We saw how to split a set into two subsets - one that contains some elements, while the other
does not. Can generalize the arguments to split a set into more than two subsets.

A (k1, k2, . . . , km)-split of set A is a sequence of sets (A1,A2, . . .Am) s.t. sets Ai form a
partition (A1 ∪ A2 ∪ . . . = A and for i ̸= j , Ai ∩ Aj = ∅) and |Ai | = ki .

An example of a (2, 1, 3)-split of A = {1, 2, 3, 4, 5, 6} is ({2, 4}, {1}, {3, 5, 6}). Here, m = 3,
A1 = {2, 4}, A2 = {1}, A3 = {3, 5, 6} s.t. |A1| = 2, |A2| = 1, |A3| = 3, A1 ∪ A2 ∪ A3 = A and
for i ̸= j , Ai ∩ Aj = ∅.

Example: Consider strings of length 6 of a’s, b’s and c ’s such that number of a’s = 2; number
of b’s = 1 and number of c ’s = 3. Possible strings: abaccc, ccbaac, bacacc, cbacac.

Each possible string, e.g. bacacc can be written as a (2, 1, 3)-split of A = {1, 2, 3, 4, 5, 6} as
({2, 4}, {1}, {3, 5, 6}) where A1 records the positions of a, A2 records the positions of b and A3

records the positions of c .
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Generalization to Multinomials

Q: Show that the number of ways to obtain an (k1, k2, . . . , km) split of A with |A| = n is(
n

k1,k2,...km

)
= n!

k1! k2! ...km!
where

∑
i ki = n.

Can map any permutation (a1, a2, . . . an) into a split by selecting the first k1 elements to form
set A1, next k2 to form set A2 and so on. For the same split, the order of the elements in each
subset does not matter. Hence f : number of permutations → number of splits is a
k1! k2! . . . km!-to-1 function.

Hence, |number of splits| = |number of permutations|
k1! k2! ...km!

= n!
k1! k2! ...km!

.
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Generalization to Multinomials - Example

Q: Count the number of permutations of the letters in the word BOOKKEEPER.

We want to count sequences of the form (1E , 1P, 2E , 1B, 1K , 1R, 2O, 1K ) = EPEEBKROOK .
There is a bijection between such sequences and (1, 2, 2, 3, 1, 1) split of A = {1, 2, . . . , 10} where
A1 is the set of positions of B ’s, A2 is the set of positions of O’s, A3 is set of positions of K and
so on.

For example, the above sequence maps to the following split:
({5}, {8,9}, { 6, 10}, { 1,3,4 }, { 2 }, { 7 })

Hence, the total number of sequences that can be formed from the letters in BOOKKEEPER =
number of (1, 2, 2, 3, 1, 1) splits of A = [10] = {1, 2, . . . , 10} = 10!

1! 2! 2! 3! 1! 1! .

Q: Count the number of permutations of the letters in the word (i) ABBA (ii) A1BBA2 and (iii)
A1B1B2A2? Ans: 6, 12, 24
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Generalization to Multinomials - Example

Q: Suppose we are planning a 20 km walk, which should include 5 northward km, 5 eastward km,
5 southward km, and 5 westward km. We can move in steps of 1 km in any direction. For
example, a valid walk is (NENWSNSSENSWWESWEENW ) that corresponds to 1 km north
followed by 1 km east and so on. How many different walks are possible?

Ans: The set A = {1, 2, . . . , 20} needs to be split into 4 subsets N,S ,E ,W s.t.
|N| = |S | = |E | = |W | = 5. Counting the number of walks = counting the number of sequences
of the form (3N, 5W , 4S , 4E , 2N, 1E , 1S) = number of ways to obtain an (5, 5, 5, 5)-split of set
{1, 2, 3, . . . 20}. The total number of walks = 20!

(5!)4 .
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Multinomial Theorem

For all m, n ∈ N and z1, z2, . . . zm ∈ R,

(z1 + z2 + . . .+ zm)
n =

∑
k1,k2,...,km

k1+k2+...km=n

(
n

k1, k2, . . . , km

)
zk1
1 zk2

2 . . . zkmm

where
(

n
k1,k2,...,km

)
= n!

k1!k2!...km!
.

Example 1 : If m = 2, k1 = k , k2 = n − k and z1 = a, z2 = b, recover the Binomial theorem.

Example 2 : If n = 4, m = 3, then the coefficient of abc2 in (a+ b + c)4 is
( 4
1,1,2

)
= 4!

1!1!2! .
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Questions?
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Inclusion-Exclusion Principle

Recall that if A,B,C are disjoint subsets, then, |A ∪ B ∪ C | = |A|+ |B|+ |C | (this is the Sum
rule from Lecture 1).

For two general sets A, B, |A ∪ B| = |A|+ |B| − |A ∩ B|. The last term fixes the “double
counting”.

Similarly, |A ∪ B ∪ C | = |A|+ |B|+ |C | − |A ∩ B| − |B ∩ C | − |A ∩ C |+ |A ∩ B ∩ C |.

In general,

| ∪i=1,2,...n Ai | =
∑
i

|Ai | −
∑

i,j s.t. 1≤i<j≤n

|Ai ∩ Aj |+
∑

i,j,k s.t. 1≤i<j<k≤n

|Ai ∩ Aj ∩ Ak |

+ . . .+ (−1)n−1| ∩i=1,2,...n Ai |
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Inclusion-Exclusion Principle - Example

Q: Suppose there are 60 math majors, 200 EECS majors, and 40 physics majors. A student is
allowed to double or even triple major. There are 4 math-EECS double majors, 3 math-physics
double majors, 11 EECS-physics double majors and 2-triple majors. What is the total number of
students across these three departments?

If M,E ,P are the sets of Math, EECS and physics majors, then we wish to compute
|M ∪ E ∪ P| = |M|+ |E |+ |P| − |M ∩ E | − |M ∩ P| − |E ∩ P|+ |M ∩ E ∩ P| = 300 -
|M ∩ E | − |M ∩ P| − |E ∩ P|+ |M ∩ E ∩ P|.

|M ∩ E | = 4 + 2 = 6, |M ∩ P| = 3 + 2 = 5, |P ∩ E | = 11 + 2 = 13. |M ∩ E ∩ P| = 2

|M ∪ E ∪ P| = 300 − 6 − 5 − 13 + 2 = 278.
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Inclusion-Exclusion Principle - Example

Q: In how many permutations of the set {0, 1, 2, . . . , 9} do either 4 and 2, 0 and 4, or 6 and 0
appear consecutively? For example, in the following permutation 42067891235, 4 and 2 appear
consecutively, but 6 and 0 do not (the order matters).

Let P42 be the set of sequences such that 4 and 2 appear consecutively. Similarly, we define P60

and P04. So we want to compute
|P42∪P60∪P04| = |P42|+ |P60|+ |P04|−|P42∩P60|−|P42∩P04|−|P60∩P04|+ |P42∩P60∩P04|.

Let us first compute |P42| = 9!. Similarly, |P60| = |P04| = 9!.

What about intersections? |P42 ∩ P60| = Number of sequences of the form
(42, 60, 1, 3, 5, 7, 8, 9) = 8!. Similarly, |P60 ∩ P04| = |P42 ∩ P04| = 8!.

|P42 ∩ P60 ∩ P04| = Number of sequences of the form (6042, 1, 3, 5, 7, 8, 9) = 7!.

By the inclusion-exclusion principle, |P42 ∪ P60 ∪ P04| = 3 × 9!− 3 × 8! + 7!.
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Questions?
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