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Recap – Machine Learning 101

Q: Suppose we toss a coin (with unknown bias) 10 times and get the sequence HHTTHTTTTH.
What is the probability that we will see 4H and 6T in the next 10 tosses of the coin?

Collect data: D = {H,H,T ,T ,H,T ,T ,T ,T ,H} when tossing the coin 10 times.

Assume model: Each toss is independent and follows the same Bernoulli distribution.

Construct the likelihood function: Pr[D|p] = p4 (1 − p)6

Compute the MLE by training the model: The MLE p̂ is our estimate of Pr[heads] that
maximizes the likelihood of seeing the data. Hence,

p̂ = argmax
p

Pr[D|p] = argmin
p

− log(Pr[D|p]) = argmin
p

[−4 log(p)− 6 log(1 − p)]

=⇒ −4
p̂
+

6
1 − p̂

= 0 =⇒ p̂ =
4
10

. (Our estimate of Pr[heads] is p̂ = 0.4)

Prediction: Since we estimate that each coin flip follows the same Bernoulli distribution with
Pr[heads] = 0.4, Pr[observe 4H, 6T|p̂ = 0.4] =

(10
4

)
(0.4)4 (1 − 0.4)6.

1



Digression – Sigmoid function

The sigmoid function is defined as: σ : R → [0, 1]: σ(x) := 1
1+exp(−x) .
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Since the range of σ is [0, 1], we will use it to output probabilities. In particular, define
parameter θ ∈ R s.t. p = σ(θ) = 1

1+exp(−θ) .

σ is an invertible function and hence there is a one-one mapping from θ to p (every p can be
specified by specifying the equivalent θ).

Note that 1 − p = 1 − 1
1+exp(−θ) =

exp(−θ)
1+exp(−θ) =

1
1+exp(θ) . Hence, if p = σ(θ), 1 − p = σ(−θ).
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Machine Learning 101 – Estimating the bias of multiple coins

Q: Suppose we toss 5 different coins and obtain the sequence HTHHT . We want to estimate
the bias of each of these coins, but have additional information that the bias of coin i depends
on its weight xi ∈ R (which is known).

Collect data: D = {H,T ,H,H,T} when tossing 5 different coins.

Assume model: The bias of each coin depends on its weight according to a linear model i.e.

pi = σ(θxi ) =
1

1 + exp(−θxi )

Here, θ is the parameter of our model, xi (the known weights) for the coins are referred to as
the features. The model is linear because the argument to the sigmoid function is linear in θ.

Construct the likelihood function: Given θ, the coin tosses are independent, i.e. if pi is the
bias of coin i , the likelihood in terms of θ is given by:

Pr[D|{x1, x2, . . . , x5}, θ] = p1 (1 − p2) p3 p4 (1 − p5)

= [σ(θx1)] [σ(−θx2)] [σ(θx3)][σ(θx4)][σ(−θx5)]
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Machine Learning 101 – Estimating the bias of multiple coins

Simplify the likelihood function: Define yi ∈ R such that yi = 1 if coin i in D is a heads and
yi = −1 if coin i is a tails. For D = {H,T ,H,H,T}, y1 = 1, y2 = −1 and so on. For example
i , yi is referred to as the label, hence each toss i is described by the (xi , yi ) pair referred to as
the input-output pair or the feature-label pair.

Pr[D|{x1, x2, . . . , x5}, θ] = [σ(y1θx1)] [σ(y2θx2)] [σ(y5θx5)] =
5∏

i=1

[σ(yiθxi )]

=⇒ − log(Pr[D|{x1, x2, . . . , x5}, θ]) =
5∑

i=1

− log(σ(yiθxi )) =
5∑

i=1

log (1 + exp(−yiθxi ))

The NLL defined above is a function of θ and is referred to as the logistic loss. This model is
referred to as (1-dimensional) logistic regression. Since we are classifying the coins as those
that came up heads or tails, we are doing binary classification.

Logistic regression for binary classification is heavily used in machine learning. E.g. Classifying
whether a patient with features such as their medical history, symptoms, test results has cancer.
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Machine Learning 101 – Estimating the bias of multiple coins

Compute the MLE by training the model: In order to compute the MLE θ̂, we need to
minimize the NLL on the previous slide,

θ̂ = argmin
θ

5∑
i=1

log (1 + exp(−yiθxi )) .

Unfortunately, this optimization problem can not be solved directly by taking derivatives like
before. We need techniques from numerical optimization that studies efficiently minimizing
complicated functions and the related computational properties (for example, see
https://vaswanis.github.io/409_981-F22.html).

Prediction: Once we have computed θ̂, we can use it to predict the probability of heads for a
new coin that has feature x as p̂ = σ(θ̂x).
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Machine Learning 101 – Generalizing to multiple dimensions

Suppose each coin i has a vector of features – its weight, color, etc that affect its bias. If there
are d such features, xi ∈ Rd .

Assume model: We will have a vector of parameters θ ∈ Rd and the bias of each coin depends
on its features as:

pi = σ

 d∑
j=1

θj xi,j

 (xi,j corresponds to feature j of coin i)

Writing this in terms of the dot product ⟨θ, xi ⟩ =
∑d

j=1 θjxi,j ,

pi =
1

1 + exp(−⟨θ, xi ⟩)

Construct the likelihood function: Suppose we toss the 5 coins, and get the same
D = {H,T ,H,H,T} sequence. By following the same steps as before, the MLE can be given by:

θ̂ = argmin
θ

5∑
i=1

log (1 + exp(−yi ⟨θ, xi ⟩)) .
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Machine Learning 101 – Generalizing beyond coins

Suppose we are given n inputs in the form of their features (X ) and labels y . Here, X is an
d × n-dimensional matrix such that the feature of input i is column Xi ∈ Rd and y is a
n-dimensional vector such that yi ∈ {−1, 1}.

In our coin example, the inputs were coins with different properties (features such as weight,
color) and the labels corresponded to whether we got a heads (y = 1) or tails (y = −1).

The feature-label could be characteristics of a patient and whether or not they have cancer,
pixels in pictures of cats and dogs and whether it is a cat or a dog, text in the email and whether
or not it is spam (Gmail uses a logistic regression model for classifying spam).

Using the same linear model Pr[yi = 1] = pi =
1

1+exp(−⟨θ,Xi ⟩) and constructing the likelihood
function in the same manner,

θ̂ = argmin
θ

n∑
i=1

log (1 + exp(−yi ⟨θ,Xi ⟩))︸ ︷︷ ︸
Logistic regression loss function

This is the definition you will find in machine learning textbooks!
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Machine Learning 101 – Generalizing beyond linear models

We can choose alternative ways to model pi . We have been using a linear model such that,
pi = σ(⟨θ,Xi ⟩), but we could use any function f (θ,Xi ) as an argument to the sigmoid function.

Designing such f is a major research direction. Current most popular models (used to classify
videos on YouTube, rank posts on Facebook/Instagram) are (much) larger variants of neural
networks that look like this:

If you found this lecture this fascinating, you can take the CMPT 410 (Machine Learning) course
offered in the Fall.
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Questions?
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Wrapping up

Sample (outcome) space S: Nonempty (countable) set of possible outcomes.

Outcome ω ∈ S: Possible “thing” that can happen.

Event E : Any subset of the sample space.

Probability function on a sample space S is a total function Pr : S → [0, 1]. For any ω ∈ S,

0 ≤ Pr [ω] ≤ 1 ;
∑
ω∈S

Pr[ω] = 1 ; Pr[E ] =
∑
ω∈E

Pr[ω]
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Wrapping up

Union: For mutually exclusive events E1,E2, . . . ,En,
Pr[E1 ∪ E2 ∪ . . .En] = Pr[E1] + Pr[E2] + . . .+ Pr[En].

Complement rule: Pr[E ] = 1 − Pr[E c ]

Inclusion-Exclusion rule: For any two events E ,F , Pr[E ∪ F ] = Pr[E ] + Pr[F ]− Pr[E ∩ F ].

Union Bound: For any events E1,E2,E3, . . .En, Pr[E1 ∪ E2 ∪ E3 . . . ∪ En] ≤
∑n

i=1 Pr[Ei ].

Uniform probability space: A probability space is said to be uniform if Pr[ω] is the same for
every outcome ω ∈ S. In this case, Pr[E ] = |E |

|S| .
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Wrapping up

Conditional Probability: For events E and F , probability of event E conditioned on F is given
by Pr[E |F ] and can be computed as Pr[E |F ] = Pr[E∩F ]

Pr[F ] .

Probability rules with conditioning: For the complement E c , Pr[E c |F ] = 1 − Pr[E |F ].

Conditional Probability for multiple events:
Pr[E1 ∩ E2 ∩ E3] = Pr[E1] Pr[E2|E1] Pr[E3|E1 ∩ E2].

Bayes rule: For events E and F if Pr[E ] ̸= 0, Pr[F |E ] = Pr[E |F ] Pr[F ]
Pr[E ] .

Law of Total Probability: For events E and F , Pr[E ] = Pr[E |F ] Pr[F ] + Pr[E |F c ] Pr[F c ].

Independent Events: Events E and F are said to be independent, if knowledge that F has
occurred does not change the probability that E occurs, i.e. Pr[E |F ] = Pr[E ] and
Pr[E ∩ F ] = Pr[E ] Pr[F ].
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Wrapping up

Pairwise Independence: Events E1, E2, . . . , En are pairwise independent, if for every pair of
events Ei and Ej (i ̸= j), Pr[Ei |Ej ] = Pr[Ei ] and Pr[Ei ∩ Ej ] = Pr[Ei ] Pr[Ej ].

Mutual Independence: Events E1, E2, . . . , En are mutually independent, if for every subset of
events, the probability that all the selected events occur equals the product of the probabilities of
the selected events. Formally, for every subset S ⊆ {1, 2, . . . , n}, Pr[∩i∈SEi ] =

∏
i∈S Pr[Ei ].

Random variable: A random “variable” R on a probability space is a total function whose
domain is the sample space S. The codomain is denoted by V (usually a subset of the real
numbers), meaning that R : S → V .

Indicator Random Variables: An indicator random variable corresponding to an event E is
denoted as IE and is defined such that for ω ∈ E , IE [ω] = 1 and for ω /∈ E , IE [ω] = 0.
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Wrapping up

Probability density function (PDF): Let R be a random variable with codomain V . The
probability density function of R is the function PDFR : V → [0, 1], such that
PDFR [x ] = Pr[R = x ] if x ∈ Range(R) and equal to zero if x /∈ Range(R).∑

x∈V PDFR [x ] =
∑

x∈Range(R) Pr[R = x ] = 1.

Cumulative distribution function (CDF): The cumulative distribution function of R is the
function CDFR : R → [0, 1], such that CDFR [x ] = Pr[R ≤ x ].

Distribution over a random variable can be fully specified using the cumulative distribution
function (CDF) (usually denoted by F ). The corresponding probability density function (PDF) is
denoted by f .
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Wrapping up

Bernoulli Distribution: fp(0) = 1 − p, fp(1) = p. Example: When tossing a coin such that
Pr[heads] = p, random variable R is equal to 1 if we get a heads (and equal to 0 otherwise). In
this case, R follows the Bernoulli distribution i.e. R ∼ Ber(p).

Uniform Distribution: If R : S → V , then for all v ∈ V , f (v) = 1/|V |. Example: When
throwing an n-sided die, random variable R is the number that comes up on the die.
V = {1, 2, . . . , n}. In this case, R follows the Uniform distribution i.e.
R ∼ Uniform{1, 2, . . . , n}.

Binomial Distribution: fn,p(k) =
(
n
k

)
pk(1 − p)n−k . Example: When tossing n independent

coins such that Pr[heads] = p, random variable R is the number of heads in n coin tosses. In
this case, R follows the Binomial distribution i.e. R ∼ Bin(n, p).

Geometric Distribution: fp(k) = (1 − p)k−1p. Example: When repeatedly tossing a coin such
that Pr[heads] = p, random variable R is the number of tosses needed to get the first heads. In
this case, R follows the Geometric distribution i.e. R ∼ Geo(p).
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Wrapping up

Expectation/mean of a random variable R is denoted by E[R] and “summarizes” its distribution.
Formally, E[R] :=

∑
ω∈S Pr[ω]R[ω]

Alternate definition of expectation: E[R] =
∑

x∈Range(R) x Pr[R = x ].

Expectation of transformed r.v’s: For a random variable X : S → V and a function
g : V → R, we define E[g(X )] as follows: E[g(X )] :=

∑
x∈Range(X ) g(x) Pr[X = x ]

Linearity of Expectation: For n random variables R1,R2, . . . ,Rn and constants a1, a2, . . . , an,
b1, b2, . . . , bn, E

[∑n
i=1 aiRi + bi

]
=

∑n
i=1 ai E[Ri ] + bi .

Conditional Expectation: For random variable R, the expected value of R conditioned on an
event A is given by E[R|A] =

∑
x∈Range(R) x Pr[R = x |A]

Law of Total Expectation: If R is a random variable S → V and events A1,A2, . . .An form a
partition of the sample space, then, E[R] =

∑
i E[R|Ai ] Pr[Ai ].
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Wrapping up

Independent random variables: We define two random variables R1 and R2 to be independent
if for all x1 ∈ Range(R1) and x2 ∈ Range(R2), events [R1 = x1] and [R2 = x2] are independent.
More formally,

Pr[(R1 = x1) ∩ (R2 = x2)] = Pr[(R1 = x1)] Pr[(R2 = x2)]

Independent random variables: Two random variables R1 and R2 are independent if for all
x1 ∈ Range(R1) and x2 ∈ Range(R2),

Pr[(R1 = x1)|(R2 = x2)] = Pr[(R1 = x1)]

Pr[(R2 = x2)|(R1 = x1)] = Pr[(R2 = x2)]

Expectation of product of r.v’s: For two r.v’s R1 and R2,
E[R1 R2] =

∑
x∈Range(R1R2)

x Pr[R1R2 = x ].

Expectation of product of independent r.v’s: For independent r.v’s R1 and R2,
E[R1 R2] = E[R1]E[R2].
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Wrapping up

Joint distribution between r.v’s X and Y can be specified by its joint PDF as follows:
PDFX ,Y [x , y ] = Pr[X = x ∩ Y = y ].

If X and Y are independent random variables, PDFX ,Y [x , y ] = PDFX [x ]PDFY [y ].

Marginalization: We can obtain the distribution for each r.v. from the joint distribution by
marginalizing over the other r.v’s i.e. PDFX [x ] =

∑
i PDFX ,Y [x , yi ].

Variance: Standard way to measure the deviation from the mean. For r.v. X ,
Var[X ] = E[(X − E[X ])2] =

∑
x∈Range(X )(x − µ)2 Pr[X = x ] where µ := E[X ].

Alternate definition of variance: Var[X ] = E[X 2]− µ2 = E[X 2]− (E[X ])2.

Standard Deviation: For r.v. X , the standard deviation of X is defined as
σX :=

√
Var[X ] =

√
E[X 2]− (E[X ])2.
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Wrapping up

Properties of variance: For constants a, b and r.v. R, Var[aR + b] = a2Var[R].

Pairwise Independence of r.v’s: Random variables R1,R2,R3, . . .Rn are pairwise independent
if for any pair Ri and Rj , for x ∈ Range(Ri ) and y ∈ Range(Rj),
Pr[(Ri = x) ∩ (Rj = y)] = Pr[Ri = x ] Pr[Rj = y ].

Linearity of variance for pairwise independent r.v’s: If R1, . . . ,Rn are pairwise independent,
Var[R1 + R2 + . . .Rn] =

∑n
i=1 Var[Ri ].

Properties of variance: If R1, . . . ,Rn are pairwise independent, for constants a1, a2, . . . an and
b1, b2, . . . bn, Var[

∑n
i=1 aiRi + bi ] =

∑n
i=1 a

2
i Var[Ri ].
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Wrapping up

Covariance: For two random variables R and S , the covariance between R and S is defined as:
Cov[R,S ] = E[(R − E[R]) (S − E[S ])] = E[RS ]− E[R]E[S ].

Properties of covariance: If R and S are independent r.v’s, E[RS ] = E[R]E[S ] and
Cov[R,S ] = 0. Cov[R,R] = Var[R]. Cov[R,S ] = Cov[S ,R].

Variance of sum of r.v’s: For r.v’s R1,R2, . . . ,Rn,
Var

[∑n
i=1 Ri

]
=

∑n
i=1 Var[Ri ] + 2

∑
1≤i<j≤n Cov[Ri ,Rj ].

If Ri and Rj are pairwise independent, Cov[Ri ,Rj ] = 0 and Var
[∑n

i=1 Ri

]
=

∑n
i=1 Var[Ri ].

Correlation: For two r.v’s R1 and R2, the correlation between R1 and R2 is defined as
Corr[R1,R2] =

Cov[R1,R2]√
Var[R1]Var[R2]

. Corr[R1,R2] ∈ [−1, 1] and indicates the strength of the

relationship between R1 and R2.
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Wrapping up

Bernoulli: If R ∼ Bernoulli(p), E[R] = p and Var[R] = p (1 − p).

Uniform: If R ∼ Uniform({v1, . . . , vn}), E[R] = v1+v2+...+vn
n and

Var[R] = [v2
1+v2

2+...v2
n ]

n −
(

[v1+v2+...vn]
n

)2
.

Binomial: If R ∼ Bin(n, p), E[R] = np and Var[R] = n p (1 − p).

Geometric: If R ∼ Geo(p), E[R] = 1
p and Var[R] = 1−p

p2 .
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Wrapping up

Tail inequalities bound the probability that the r.v. takes a value much different from its mean.

Markov’s Theorem: If X is a non-negative random variable, then for all x > 0,
Pr[X ≥ x ] ≤ E[X ]

x .

Chebyshev’s Theorem: For a r.v. X and all x > 0, Pr[|X − E[X ]| ≥ x ] ≤ Var[X ]
x2 .

Weak Law of Large Numbers: Let G1,G2, . . . ,Gn be pairwise independent variables with the
same mean µ and (finite) standard deviation σ. Define Tn :=

∑n
i=1 Gi

n , then for every ϵ > 0,
limn→∞ Pr[|Tn − µ| ≤ ϵ] = 1.

Chernoff Bound: If T1,T2, . . . ,Tn are mutually independent r.v’s such that 0 ≤ Ti ≤ 1 for all i .
If T :=

∑n
i=1 Ti , for all c ≥ 1 and β(c) := c ln(c)− c + 1, Pr[T ≥ cE[T ]] ≤ exp(−β(c)E[T ]).
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What’s Next – Continuous Random Variables

We have studied random variables that can take on discrete values – number of heads when
tossing a coin, the number on a dice or the number of attempts to hit the bullsye in a dart game.

We have used these discrete distributions for designing randomized algorithms for verifying
matrix multiplication, finding the maximum cut in graphs, polling and binary classification in
machine learning.

In many applications, it is often more natural to model quantities as continuous random
variables, for example, the amount of time it takes to transmit a message over a noisy channel or
study the distribution of income in a population.

Continuous random variables are often used in distributed computing and for machine learning –
fitting a model that can effectively explain the collected data.

22



What’s Next – Continuous Random Variables

Discrete random variables can take on specific values in an interval. For example, if
X ∼ Uniform{v1, v2, . . . , vn}, X can take on values from the set {v1, v2, . . . , vn}. If
X ∼ Bin(n, p), X can take on values in the set {0, , 1, . . . , n}.

Continuous random variable: A r.v. that can take on all possible values in a specified interval.

Example: If R is a continuous r.v. and R ∼ Uniform[0, 1], the r.v. R can be equal to any
number in the [0, 1] interval – for example, 0.01, 2/3 or 0.9 with equal probability.

Continuous r.v. can often be seen as limits of discrete r.v. For example, the continuous uniform
distribution is a limit of the discrete distribution X ∼ Uniform(v1, v2, . . . , vn) as n → ∞.

Similarly, the normal (Gaussian) distribution can be interpreted as a limit of the Binomial
distribution X ∼ Bin(n, p) as n → ∞.
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What’s Next

STAT 271: Probability and Statistics for Computing Science

Continuous random variables and distributions

Sampling and Parameter estimation

Linear Regression

Hypothesis testing

Analysis of Variance
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Questions?
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