
CMPT 210: Probability and Computing

Lecture 23

Sharan Vaswani

March 31, 2023



Randomized Load Balancing

Fussbook is a new social networking site oriented toward unpleasant people. Like all major web
services, Fussbook has a load balancing problem: it receives lots of forum posts that computer
servers have to process. If any server is assigned more work than it can complete in a given
interval, then it is overloaded and system performance suffers. That would be bad because
Fussbook users are not a tolerant bunch.

The programmers of Fussbook just randomly assigned posts to computers, and to their surprise
the system has not crashed yet.

Fussbook receives 24000 forum posts in every 10-minute interval. Each post is assigned to one of
several servers for processing, and each server works sequentially through its assigned tasks. It
takes a server an average of 1/4 second to process a post. No post takes more than 1 second.

This implies that a server could be overloaded when it is assigned more than 600 units of work in
a 10-minute interval. On average, for 24000 × 1

4 = 6000 units of work in a 10-minute interval,
Fussbook requires at least 10 servers to ensure that no server is overloaded (with perfect
load-balancing).

1



Randomized Load Balancing

Q: There might be random fluctuations in the load or the load-balancing is not perfect. How
many servers does Fussbook need to ensure that their servers are not overloaded with
high-probability?

Let m be the number of servers that Fussbook needs to use. Recall that a server may be
overloaded if the load it is assigned exceeds 600 units. Let us first look at server 1 and define T

to be the r.v. corresponding to the number of units of work assigned to the first server.

Let Ti be the number of seconds server 1 spends on processing post i . Ti = 0 if the task is
assigned to a different (not the first server). The maximum amount of time spent on post i is
1-second. Hence, Ti ∈ [0, 1].

Since there are n := 24000 posts in every 10-minute interval, the load (amount of units) assigned
to the first server is equal to T =

∑n
i=1 Ti . Server 1 may be overloaded if T ≥ 600, and hence

we want to upper-bound the probability Pr[T ≥ 600].

Since the assignment of a post to a server is independent of the time required to process the
post, the Ti r.v’s are mutually independent. Hence, we can use the Chernoff bound. 2



Randomized Load Balancing

We first need to estimate E[T ].

E[T ] = E[
n∑

i=1

Ti ] =
n∑

i=1

E[Ti ] (Linearity of expectation)

E[Ti ] = E[Ti |server 1 is assigned post i ] Pr[server 1 is assigned post i ]

+ E[Ti |server 1 is not assigned post i ] Pr[server 1 is not assigned post i ]

=
1
4

1
m

+ (0)(1 − 1/m) =
1

4m
.

=⇒ E[T ] =
n∑

i=1

1
4m

=
n

4m
=

6000
m

.

3



Randomized Load Balancing

Recall the Chernoff Bound: Pr[T ≥ cE[T ]] ≤ exp(−β(c)E[T ]). In our case,
cE[T ] = 600 =⇒ c = m

10 . Hence,

Pr[T ≥ 600] ≤ exp

(
−β

(m

10

) 6000
m

)
Hence, Pr[first server is overloaded] = Pr[T ≥ 600] ≤ exp

(
−β

(
m
10

) 6000
m

)
.

Pr[some server is overloaded]

= Pr[server 1 is overloaded ∪ server 2 is overloaded ∪ . . . ∪ server m is overloaded]

≤
m∑
j=1

Pr[server j is overloaded] (Union Bound)

= mPr[server 1 is overloaded] ≤ m exp

(
−β

(m

10

) 6000
m

)
(All servers are equivalent)

=⇒ Pr[no server is overloaded] ≥ 1 −m exp

(
−β

(m

10

) 6000
m

)
.

4



Randomized Load Balancing

Plotting Pr[no server is overloaded] as a function of m.

11 12 13 14 15

0.4

0.6

0.8

1

m

P
r[

no
se

rv
er

is
ov

er
lo

ad
ed
]

Hence, as m ≥ 12, the probability that no server gets overloaded tends to 1 and hence none of
the Fussbook servers crash!

5



Questions?

5



Machine Learning 101 – Tossing coins

Q: We have a coin such that Pr[heads] = q. We toss this coin 5 times independently and record
the observations. What is the probability that we get 3H and 2T in the 5 tosses.

If X is the r.v. equal to the number of heads in 5 tosses, then X ∼ Bin(5, q) and hence,
Pr[3H and 2T] =

(5
3

)
q3(1 − q)2.

Q: We have a coin such that Pr[heads] = q. We toss this coin 5 times independently. What is
the probability that we get the following sequence of observations – HTHHT?

Pr[observe HTHHT] = Pr[Toss 1 is H ∩ Toss 2 is T ∩ . . . ∩ Toss 5 is T]

= Pr[Toss 1 is H] Pr[Toss 2 is T] . . .Pr[Toss 5 is H] = q3(1 − q)2

(Tosses are independent)

Q: If I use a different coin that has Pr[heads] = r and repeat the same experiment, what is the
probability that we get the following sequence of observations – HTHHT? Ans: r3(1 − r)2.

Hence, Pr[observe HTHHT sequence|Pr[heads = q]] = q3(1 − q)2.

6



Machine Learning 101 – Estimating the bias of a coin

Similar to the voter poll example, let us “invert” this reasoning – suppose we took a coin and
want to estimate its (unknown) bias i.e. figure out what is the Pr[heads]. To do this, we perform
an experiment – toss the coin 5 times and record the observations. Suppose we get HTHHT as
the sequence of observations.

This sequence of observations is referred to as the data and denoted by D. Using D, we wish to
estimate the bias of the coin.

If we estimate the (unknown) bias of the coin to be p, then the probability that we saw the data
D is equal to p3(1 − p)2 (by the same reasoning as on the last slide). Formally,

Pr[D|p] = p3(1 − p)2

This is referred to as the likelihood of seeing the data if we were to estimate the bias to be p.

7



Machine Learning 101 – Estimating the bias of a coin

The standard way to “fit” the data and estimate the bias is maximum likelihood estimation.
For this, we compute the estimate (p̂) that maximizes the likelihood of observing D. Formally,

p̂ = argmax
p

Pr[D|p]

Here, argmaxp returns the value of p that maximizes the likelihood. p̂ is the statistical
estimate of the unknown bias (similar to what we saw in the Voter Poll example) and is also
referred to as the maximum likelihood estimator (MLE).

It is equivalent and more convenient to calculate the minimizer of the negative log-likelihood
(NLL) (since log is a monotonic function). The NLL is also referred to as the loss function.
Formally,

p̂ = argmin
p

[− log(Pr[D|p])]

8



Machine Learning 101 – Estimating the bias of a coin

Let us compute the MLE for the bias of the coin. Recall that Pr[D|p] = p3(1 − p)2.

− log(Pr(D|p)) = −3 log(p)− 2 log(1 − p) =⇒ p̂ = argmin
p

[−3 log(p)− 2 log(1 − p)]

Taking derivatives and setting it to zero,

d [−3 log(p)− 2 log(1 − p)]

dp
= 0 =⇒ −3

p̂
+

2
1 − p̂

= 0 =⇒ 5p̂ = 3 =⇒ p̂ =
3
5
= 0.6.

Checking that this is the minimum by computing the second derivative,

d2[−3 log(p)− 2 log(1 − p)]

dp2 =
d [−3

p + 2
1−p ]

dp
=

3
p2 +

2
(1 − p)2

> 0 (for p ∈ (0, 1))

Hence, p̂ is the minimum of the NLL.

For this simple example, the MLE of Pr[heads] is equal to the average number of heads we saw
in D.

9



Machine Learning 101 – Estimating the bias of a coin

If our experiment consists of tossing n coins and n → ∞, then the MLE will tend to the true
bias of the coin. Similar to the Voter Poll example, we can calculate the number of coin tosses
needed to ensure that the MLE is ϵ close to the true bias of the coin with probability 1 − δ.

Q: Based on the results of our experiment, what should be our “guess”/“prediction” that we get a
heads in the next toss of the coin?

We have estimated the bias of the coin to be equal to 0.6. Hence, given the results of our
experiment, we should predict that we will get a heads with probability 0.6 when we toss this
coin again in the future.

10



Machine learning

The basic framework in machine learning is to:

Collect (training) data from the world (in this case, by tossing the coin).

Construct a model that can explain the observations (in this case, our model was that each
toss is independent and follows the same Bernoulli distribution).

Use the model and D to construct the likelihood function (in this case, p3(1 − p)2).

Compute the MLE by minimizing the negative log-likelihood. This is an optimization
problem (in this case, it was just taking derivatives) and is referred to as training the model.

Use the trained model to make predictions about the future (in this case, predict the
probability that the next toss comes up heads). This is referred to as prediction or
inference.

11



Questions?

11


