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Recap

Tail inequalities bound the probability that the r.v. takes a value much different from its mean.

Markov’s Theorem: If X is a non-negative random variable, then for all x > 0,
Pr[X ≥ x ] ≤ E[X ]

x .

Chebyshev’s Theorem: For a r.v. X and all x > 0, Pr[|X − E[X ]| ≥ x ] ≤ Var[X ]
x2 .
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Chebyshev’s Theorem - Example

Q: Consider a r.v. X ∼ Bin(20, 0.75). Plot the PDFX , compute its mean and standard deviation
and bound Pr[10 < X < 20].

Range(X ) = {0, 1, . . . , 20} and for k ∈ Range(X ),
f (k) =

(
n
k

)
pk(1 − p)n−k .

E[X ] = np = (20)(0.75) = 15
Var[X ] = np(1 − p) = 20(0.75)(0.25) = 3.75 and hence
σX =

√
3.75 ≈ 1.94.

Pr[10 < X < 20] = 1 − Pr[X ≤ 10 ∪ X ≥ 20]

= 1 − Pr[|X − 15| ≥ 5]

= 1 − Pr[|X − E[X ]| ≥ 5]

≥ 1 − Var[X ]

(5)2
= 1 − 3.75

25
= 0.85.

Hence, the “probability mass” of X is “concentrated” around its mean.
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Voter Poll

Q: Suppose there is an election between two candidates Donald Trump and Joe Biden, and we
are hired by candidate Biden’s election campaign to estimate his chances of winning the election.
In particular, we want to estimate p, the fraction of voters favoring Biden before the election. We
conduct a voter poll – selecting (typically calling) people uniformly at random (with replacement
so that we can choose a person twice) and try to estimate p. What is the number of people we
should poll to estimate p reasonably accurately and with reasonably high probability?

Define Xi to be the indicator r.v. equal to 1 iff person i that we called favors Biden.

Assumption (1): The Xi r.v’s are mutually independent since the people we poll are chosen
randomly and we assume that their opinions do not affect each other.

Assumption (2): The people we call are identically distributed i.e. Xi = 1 with probability p.

Suppose we poll n people and define Sn :=
∑n

i=1 Xi as the r.v. equal to the total number of
people (amongst the ones we polled) that prefer Biden. Sn

n is the statistical estimate of p.

Q: What is the distribution of Sn? Ans: Sn ∼ Bin(n, p)
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Voter Poll

We want to find for what n is our estimate for p accurate up to an error ϵ > 0 and with
probability 1 − δ (for δ ∈ (0, 1)). Formally, for what n is,

Pr

[∣∣∣∣Snn − p

∣∣∣∣ < ϵ

]
≥ 1 − δ

Since Sn ∼ Bin(n, p), E[Sn] = np and hence, E
[
Sn

n

]
= p, meaning that our estimate is unbiased

– in expectation, the estimate is equal to p. Hence, the above statement is equivalent to,

Pr

[∣∣∣∣Snn − E
[
Sn
n

]∣∣∣∣ < ϵ

]
≥ 1 − δ

Hence, we can use Chebyshev’s Theorem for the r.v. Sn

n with x = ϵ to bound the LHS

Pr

[∣∣∣∣Snn − E
[
Sn
n

]∣∣∣∣ < ϵ

]
= 1 − Pr

[∣∣∣∣Snn − E
[
Sn
n

]∣∣∣∣ ≥ ϵ

]
≥ 1 − Var[Sn/n]

ϵ2
.

Hence, the problem now is to find n such that,

1 − Var[Sn/n]
ϵ2

≥ 1 − δ =⇒ Var[Sn/n]
ϵ2

< δ
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Voter Poll

Let us calculate the Var[Sn/n].

Var[Sn/n] =
1
n2 Var[Sn] (Using the property of variance)

=
1
n2 n p (1 − p) =

p (1 − p)

n
(Using the variance of the Binomial distribution)

Hence, we want to find n s.t.
p (1 − p)

nϵ2
< δ =⇒ n ≥ p(1 − p)

ϵ2 δ

But we do not know p! If n ≥ maxp
p(1−p)
ϵ2 δ , then for any p, n ≥ p(1−p)

ϵ2 δ . So the problem is to
compute maxp

p(1−p)
ϵ2 δ . This is a concave function and is maximized at p = 1/2.

Hence, if n ≥ 1
4ϵ2δ , then Pr

[∣∣Sn

n − p
∣∣ < ϵ

]
≥ 1 − δ meaning that we have estimated p upto an

error ϵ and this bound is true with high probability equal to 1 − δ.

For example, if ϵ = 0.01 and δ = 0.01 meaning that we want the bound to hold 99% of the time,
then, we require n ≥ 250000. 5



Pairwise Independent Sampling

Claim: Let G1,G2, . . . ,Gn be pairwise independent random variables with the same mean µ and
standard deviation σ. Define Sn :=

∑n
i=1 Gi , then,

Pr

[∣∣∣∣Snn − µ

∣∣∣∣ ≥ ϵ

]
≤ 1

n

(σ
ϵ

)2
.

Proof : Let us compute E[Sn/n] and Var[Sn/n].

E[Sn] = E

[
n∑

i=1

Gi

]
=

n∑
i=1

E[Gi ] = nµ =⇒ E[Sn/n] =
1
n
E[Sn] = µ

(Using linearity of expectation)

Var[Sn] = Var

[
n∑

i=1

Gi

]
=

n∑
i=1

Var[Gi ] = nσ2

(Using linearity of variance for pairwise independent r.v’s)

=⇒ Var[Sn/n] =
1
n2 Var[Sn] =

σ2

n
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Pairwise Independent Sampling

Using Chebyshev’s Theorem,

Pr

[∣∣∣∣Snn − E
[
Sn
n

]∣∣∣∣ ≥ ϵ

]
= Pr

[∣∣∣∣Snn − µ

∣∣∣∣ ≥ ϵ

]
≤ Var[Sn/n]

ϵ2
=

σ2

nϵ2

Hence, for arbitrary pairwise independent r.v’s, if n increases, the probability of deviation from
the mean µ decreases.

Weak Law of Large Numbers: Let G1,G2, . . . ,Gn be pairwise independent variables with the
same mean µ and (finite) standard deviation σ. Define Xn :=

∑n
i=1 Gi

n , then for every ϵ > 0,

lim
n→∞

Pr[|Xn − µ| ≤ ϵ] = 1.

Proof : Follows from the theorem on pairwise independent sampling since
limn→∞ Pr[|Xn − µ| ≤ ϵ] = limn→∞

[
1 − σ2

nϵ2

]
= 1.
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Questions?
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Sums of Random Variables

If we know that the r.v X is (i) non-negative and (ii) E[X ], we can use Markov’s Theorem to
bound the probability of deviation from the mean.

If we know both (i) E[X ] and (ii) Var[X ], we can use Chebyshev’s Theorem to bound the
probability of deviation.

In many cases the random variable of interest is a sum of r.v’s (e.g., for the voter poll
application), and we can use the Chernoff bound to obtain tighter bounds on the deviation from
the mean.

Chernoff Bound: Let T1,T2, . . . ,Tn be mutually independent r.v’s such that 0 ≤ Ti ≤ 1 for all
i . If T :=

∑n
i=1 Ti , for all c ≥ 1 and β(c) := c ln(c)− c + 1,

Pr[T ≥ cE[T ]] ≤ exp(−β(c)E[T ])

If Ti ∼ Ber(p) and are mutually independent, then Ti ∈ {0, 1} and we can use the Chernoff
bound to bound the deviation from the mean for T ∼ Bin(n, p). In general, if Ti ∈ [0, 1], the
Chernoff Bound can be used even if the Ti ’s have different distributions! 8



Chernoff Bound – Binomial Distribution

Q: Bound the probability that the number of heads that come up in 1000 independent tosses of
a fair coin exceeds the expectation by 20% or more.

Let Ti be the r.v. for the event that coin i comes up heads, and let T denote the total number
of heads. Hence, T =

∑1000
i=1 Ti . For all i , Ti ∈ {0, 1} and are mutually independent r.v’s.

Hence, we can use the Chernoff Bound.

We want to compute the probability that the number of heads is larger than the expectation by
20% meaning that c = 1.2 for the Chernoff Bound. Computing β(c) = c ln(c)− c + 1 ≈ 0.0187.
Since the coin is fair, E[T ] = 1000 1

2 = 500. Plugging into the Chernoff Bound,

Pr[T ≥ cE[T ]] ≤ exp(−β(c)E[T ]) =⇒ Pr[T ≥ 1.2E[T ]] ≤ exp(−(0.0187) (500)) ≈ 0.0000834.

Comparing this to using Chebyshev’s inequality,

Pr[T ≥ cE[T ]] = Pr[T − E[T ] ≥ (c − 1)E[T ]] ≤ Pr[|T − E[T ]| ≥ (c − 1)E[T ]]

≤ Var[T ]

(c − 1)2 (E[T ])2
=

1000 1
4

(1.2 − 1)2(5002)
=

250
0.22 5002 =

250
10000

= 0.025.
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