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Tail inequalities

Variance gives us one way to measure how “spread” the distribution is.

Tail inequalities bound the probability that the r.v. takes a value much different from its mean.

Example: Consider a r.v. X that can take on only non-negative values and E[X ] = 99.99. Show
that Pr[X ≥ 300] ≤ 1

3 .

Proof : E[X ] =
∑

x∈Range(X )

x Pr[X = x ] =
∑

x|x≥300

x Pr[X = x ] +
∑

x|0≤x<300

x Pr[X = x ]

≥
∑

x|x≥300

(300) Pr[X = x ] +
∑

x|0≤x<300

x Pr[X = x ]

= (300) Pr[X ≥ 300] +
∑

x|0≤x<300

x Pr[X = x ]

If Pr[X ≥ 300] > 1
3 , then, E[X ] > (300) 1

3 +
∑

x|0≤x<300 x Pr[X = x ] > 100 (since the second
term is always non-negative). Hence, if Pr[X ≥ 300] > 1

3 , E[X ] > 100 which is a contradiction
since E[X ] = 99.99.
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Markov’s Theorem

Markov’s theorem formalizes the intuition on the previous slide, and can be stated as follows.
Markov’s Theorem: If X is a non-negative random variable, then for all x > 0,

Pr[X ≥ x ] ≤ E[X ]

x
.

Proof : Define I{X ≥ x} to be the indicator r.v. for the event [X ≥ x ]. Then for all values of X ,
x I{X ≥ x} ≤ X .

E[x I{X ≥ x}] ≤ E[X ] =⇒ x E[I{X ≥ x}] ≤ E[X ] =⇒ x Pr[X ≥ x ] ≤ E[X ]

=⇒ Pr[X ≥ x ] ≤ E[X ]

x
.

Since the above theorem holds for all x > 0, we can set x = cE[X ] for c ≥ 1. In this case,
Pr[X ≥ cE[X ]] ≤ 1

c . Hence, the probability that X is “far” from the mean in terms of the
multiplicative factor c is upper-bounded by 1

c .
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Markov’s Theorem – Example

Q: Suppose there is a dinner party where n people check in their coats. The coats are mixed up
during dinner, so that afterward each person receives a random coat. In particular, each person
gets their own coat with probability 1

n .

Recall that if G is the r.v. corresponding to the number of people that receive their own coat,
then we used the linearity of expectation to derive that E[G ] = 1. Using Markov’s Theorem,

Pr[G ≥ x ] ≤ E[G ]

x
=

1
x
.

Hence, we can bound the probability that x people receive their own coat. For example, there is
no better than 20% chance that more than 5 people get their own coat.
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Markov’s Theorem – Example

Q: If X is a non-negative r.v. such that E[X ] = 150, compute the probability that X is at least
200. Ans: Pr[X ≥ 200] ≤ E[X ]

200 = 3
4

Q: If we are provided additional information that X can not take values less than 100 and
E[X ] = 150, compute the probability that X is at least 200.

Define Y := X − 100. E[Y ] = E[X ]− 100 = 50 and Y is non-negative.

Pr[X ≥ 200] = Pr[Y + 100 ≥ 200] = Pr[Y ≥ 100] ≤ E[Y ]

100
=

50
100

=
1
2

Hence, if we have additional information (in the form of a lower-bound that a r.v. can not be
smaller than some constant b > 0), we can use Markov’s Theorem on the shifted r.v. (Y in our
example) and obtain a tighter bound on the probability of deviation.
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Chebyshev’s Theorem

Chebyshev’s Theorem: For a r.v. X and any constant y > 0,

Pr[|X − E[X ]| ≥ y ] ≤ Var[X ]

y2 .

Proof : Use Markov’s Theorem with some cleverly chosen function of X . Formally, for some
function f such that Y := f (X ) is non-negative. Using Markov’s Theorem for Y ,

Pr[f (X ) ≥ x ] ≤ E[f (X )]

x

Choosing f (X ) = |X − E[X ]|2 and x = y2 implies that f (X ) is non-negative and x > 0. Using
Markov’s Theorem,

Pr[|X − E[X ]|2 ≥ y2] ≤ E[|X − E[X ]|2]
y2

Note that Pr[|X − E[X ]|2 ≥ y2] = Pr[|X − E[X ]| ≥ y ], and hence,

Pr[|X − E[X ]| ≥ y ] ≤ E[|X − E[X ]|2]
y2 =

Var[X ]

y2
5



Chebyshev’s Theorem

Chebyshev’s Theorem bounds the probability that the random variable X is “far” away from the
mean E[X ] by an additive factor of x .

If we set x = cσX where σX is the standard deviation of X , then by Chebyshev’s Theorem,

Pr[(X ≥ E[X ] + c σX ) ∪ (X ≤ E[X ]− c σX )] = Pr[|X − E[X ]| ≥ cσX ] ≤
Var[X ]

c2σ2
X

=
1
c2

Pr[E[X ]− cσX < X < E[X ] + cσX ] = Pr[|X − E[X ]| ≤ cσX ]

=⇒ Pr[E[X ]− cσX < X < E[X ] + cσX ] = 1 − Pr[|X − E[X ]| ≥ cσX ] ≥ 1 − 1
c2 .

Chebyshev’s Theorem is used to bound the probability that X is “concentrated” near its mean.

Unlike Markov’s Theorem, Chebyshev’s Theorem does not require the r.v. to be non-negative,
but requires knowledge of the variance.
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Chebyshev’s Theorem - Example

Q: If X is a non-negative r.v. such that E[X ] = 100 and σX = 15, compute the probability that
X is at least 300.

If we use Markov’s Theorem, Pr[X ≥ 300] ≤ E[X ]
300 = 1

3 .

Note that Pr[|X − 100| ≥ 200] = Pr[X ≤ −100 ∪ X ≥ 300] = Pr[X ≥ 300]. Using Chebyshev’s
Theorem,

Pr[X ≥ 300] = Pr[|X − 100| ≥ 200] ≤ Var[X ]

(200)2
=

152

2002 ≈ 1
178

.

Hence, by exploiting the knowledge of the variance and using Chebyshev’s inequality, we can
obtain a tighter bound.
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