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Counting Sets - Example

Q: Suppose we want to buy 10 donuts. There are 5 donut varieties – chocolate, lemon-filled,
sugar, glazed, plain. What is the number of ways to select the 10 donuts?

Let A be the set of ways to select the 10 donuts. Each element of A is a potential selection. For
example, 4 chocolate, 3 lemon, 0 sugar, 2 glazed and 1 plain.

Let’s map each way to a string as follows: 0000︸︷︷︸
chocolate

000︸︷︷︸
lemon

︸︷︷︸
sugar

00︸︷︷︸
glazed

0︸︷︷︸
plain

.

Lets fix the ordering – chocolate, lemon, sugar, glazed and plain, and abstract this out further to
get the sequence: 0000 1 000 1 1 00 1 0. Hence, each way of choosing donuts is mapped to a
binary sequence of length 14 with exactly 4 ones. Now, let B be all 14-bit sequences with exactly
4 ones. An element of B is 11110000000000.

Q: The above sequence corresponds to what donut order? Ans: All plain donuts.

For every way to select donuts, we have an equivalent sequence in B. And every sequence in B

implies a unique way to select donuts. Hence, the mapping from A → B is a bijective function.
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Counting Sets - using a bijection

Hence, |A| = |B|, meaning that we have reduced the problem of counting the number of ways to
select donuts to counting the number of 14-bit sequences with exactly 4 ones.

General result: The number of ways to choose n elements with k available varieties is equal to
the number of n + k − 1-bit binary sequences with exactly k − 1 ones.

Q: There are 2 donut varieties – chocolate and lemon-filled. Suppose we want to buy only 2
donuts. Use the above result to count the number of ways in which we can select the donuts?
What are these ways?

Ans: Since n = 2, k = 2, we want to count the sequences with exactly 1 one in 3-bit sequences.
{(0, 0, 1), (1, 0, 0), (0, 1, 0)}.

Q: In the above example, I want at least one chocolate donut. What are the types of acceptable
3-bit sequences with this criterion? How many ways can we do this?

Ans: We want to count the number of 3-bit sequences that start with zero and have exactly 1
one in them. So {(0, 1, 0), (0, 0, 1)}.
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Counting Sequences - using the product rule

Q: Suppose the university offers Math courses (denoted by the set M), CS courses (set C ) and
Statistics courses (set S). We need to pick one course from each subject – Math, CS and
Statistics. What is the number of ways we can select we can select the 3 courses?

The above problem is equivalent to counting the number of sequences of the form (m, c , s) that
maps to choose the Math course m, CS course c and Stats course s.

Recall that the product of sets M × C × S is a set consisting of all sequences where the first
component is drawn from M, the second component is drawn from C and the third from S , i.e.
M × C × S = {(m, c , s)|m ∈ M, c ∈ C , s ∈ S}. Hence, counting the number of sequences is
equivalent to computing |M × C × S |.

Product Rule: |M × C × S | = |M| × |C | × |S |.

Using the above equivalence, the number of sequences and hence, the number of ways to select
the 3 courses is |M| × |C | × |S |.
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Counting Sequences - Example

Q: What is the number of length n-passwords that can be generated if each character in the
password is allowed to be lower-case letter?

Ans: Each possible password is of the form (a, b, d , . . . , ) where each element in the sequence
can be selected from the {a, b, . . . z} set.
Using the equivalence between sequences and products of sets, counting the number of such
sequences is equivalent to computing |{a, b, . . . z} × {a, b, . . . z}×{a,b,. . . z} . . . |.
Using the product rule, |{a, b, . . . z} × {a, b, . . . z} × {a, b, . . . z} . . . | =
|{a, b, . . . z}| × |{a, b, . . . z}| × . . . = 26n.
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Counting Sets - using the sum rule

Q: Let R be the set of rainy days, S be the set of snowy days and H be the set of really hot days
in 2023. A bad day can be either rainy, snowy or really hot. What is the number of good days?

Let B be the set of bad days. B = R ∪ S ∪ H, and we want to estimate |B̄|. |D| = 365.
|B̄| = |D| − |B| = 365 − |B| = 365 − |R ∪ S ∪ H|.

Since the sets R , S and H are disjoint, |R ∪ S ∪ H| = |R|+ |S |+ |H|, and hence the number of
good days = 365 − |R| − |S | − |H|.

Sum rule: If A1,A2 . . .Am are disjoint sets, then, |A1 ∪ A2 ∪ . . . ∪ Am| =
∑m

i=1 |Ai |.
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Counting Sets - Example

Q: What is the number of passwords that can be generated if the (i) first character is only
allowed to be a lower-case letter, (ii) each subsequent character in the password is allowed to be
lower-case letter or digit (0 − 9) and (iii) the length of the password is required to be between
6-8 characters?

Let L = {a, b, . . . z} and D = {0, 1, 2, . . .}. Using the equivalence between sequences and
products of sets, the set of passwords of length 6 is given by P6 = L× (L ∪ D)5. Using the
product rule, |P6| = |L| × (|L ∪ D|)5 = |L| × (|L|+ |D|)5.

Since the total set of passwords are P = P6 ∪ P7 ∪ P8, and a password can be either of length 6,
7 or 8, sets P6, P7 and P8 are disjoint. Using the sum rule, |P| = |P6|+ |P7|+ |P8| =
|L| ×

[
(|L|+ |D|)5(1 + (|L|+ |D|) + (|L|+ |D|)2)

]
= 26 × 365 × [1 + 36 + 1296].

6



Questions?
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Counting sets - using the generalized product rule

Q: Suppose we have p prizes to be handed amongst the set A of n students. What are the
number of ways in which we can distribute the prizes? Ans: Consider sequences of length p

where element i is the student that receives prize i . The element i can be one of n students.
The number of sequences is equal to |A× A× . . . | = |A|p = np.

Q: Suppose we have p prizes to be handed amongst the set A of n students. What are the
number of ways in which we can distribute the prizes such that each prize goes to a different
student i.e. no student receives more than one prize?

Consider sequences of length p. The first entry can be chosen in n ways (the first prize can be
given to one of the n students). After the first entry is chosen, since the same student cannot
receive the prize, the second entry can be chosen in n − 1 ways, and so on. Hence, the total
number of ways to distribute the prizes = n × (n − 1)× . . .× (n − (p − 1)).

Generalized product rule: If S is the set of length k sequences such that the first entry can be
selected in n1 ways, after the first entry is chosen, the second one can be chosen in n2 ways, and
so on, then |S | = n1 × n2 × . . . nk . If n1 = n2 = . . . = nk , we recover the product rule.
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Counting Sets - Example

Q: A dollar bill is defective if some digit appears more than once in the 8-digit serial number.
What is the fraction of non-defective bills?

In order to compute the fraction of non-defective bills, we need to compute the quantity
|serial numbers with all different digits|

|possible serial numbers| .

For computing |possible serial numbers|, each digit can be one of 10 numbers. Hence, using the
product rule, |possible serial numbers| = 10 × 10 . . . = 108.

For computing |serial numbers with all different digits|, the first digit can be one of 10 numbers.
Once the first digit is chosen, the second one can be chosen in 9 ways, and so on. By the
generalized product rule, |serial numbers with all different digits| = 10 × 9 × . . . 3 = 1, 814, 400.

Fraction of non-defective bills = 1,814,400
108 = 1.8144%.
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Permutations

A permutation of a set S is a sequence of length |S | that contains every element of S exactly
once. Permutations of {a, b, c} are (a, b, c), (a, c , b), (b, c , a), (b, a, c), (c , a, b), (c , b, a).

Q: Given a set of size n, what is the total number of permutations?

Considering sequences of length n, the first entry can be chosen in n ways. Since each element
can be chosen only once, the second entry can be chosen in n − 1 ways, and so on.

By the generalized product rule, the number of permutations = n × (n − 1)× . . .× 1.

Factorial: n! := n × (n − 1)× . . .× 1. By convention: 0! = 1.

How big is n!? Stirling approximation: n! ≈
√

2πn
(
n
e

)n.
Q: Which is bigger? n! vs n(n − 1)(n + 2) (n − 3)! ? Ans:
n! = n(n − 1)(n − 2)(n − 3)! < n(n − 1)(n + 2)(n − 3)!.

Q: In how many ways can we arrange n people in a line? Ans: n!
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Counting sets - Division rule

k-to-1 function: Maps exactly k elements of the domain to every element of the codomain.

If f : A → B is a k-to-1 function, then, |A| = k |B|.

Example: E is the set of ears in this room, and P is the set of people. Then f mapping the ears
to people is a 2-to-1 function. Hence, |E | = 2|P|.

Q: If f : A → B is a k-to-1 function, and g : B → C is a m-to-1 function, then what is |A|/|C |?

Ans: |A| = k|B| = km|C |. Hence |A|/|C | is km.

Q: If f : A → B is a k-to-1 function, and g : C → B is a m-to-1 function, then what is |A|/|C |?

Ans: |A| = k|B|. |C | = m|B|. |A|/|C | = k
m .
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Counting sets - Example

Q: In how many ways can we arrange n people around a round table? Two seatings are
considered to be the same arrangement if each person sits with the same person on their left in
both seatings.

Starting from the head of the table, and going clockwise, each seating has an equivalent
sequence. |seatings| = number of permutations = n!.

n different seatings can result in the same arrangement (by clockwise rotation).

Hence, f : seatings → arrangements is an n-to-1 function. Hence, the
|seatings| = n |arrangements|, meaning that the |arrangements| = (n − 1)!.
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Questions?
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Counting subsets

Q: How many size-k subsets of a size-n set are there?
Example: How many ways can we select 5 books from 100?

Let us form a permutation of the n elements, and pick the first k elements to form the subset.
Every size k subset can be generated this way. There are n! total such permutations.

The order of the first k elements in the permutation does not matter in forming the subset, and
neither does the order of the remaining n − k elements.

The first k elements can be ordered in k! ways and the remaining n− k elements can be ordered
in (n − k)! ways. Using the product rule, k!× (n − k)! permutations map to the same size k

subset.

Hence, the function f : permutations → size k subsets is a k!× (n − k)!-to-1 function. By the
division rule, |permutations| = k!× (n − k)! |size k subsets|. Hence, the total number of size k

subsets = n!
k!×(n−k)! .

n choose k =
(
n
k

)
:= n!

k!×(n−k)! .
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Counting subsets

Q: Prove that
(
n
k

)
=

(
n

n−k

)
- both algebraically (using the formula for

(
n
k

)
) and combinatorially

(without using the formula)

Ans: Algebraically,
(
n
k

)
is symmetric with respect to k and n − k . Combinatorially, number of

ways of choosing elements to form a set of size k = number of ways of choosing n − k elements
to discard.

Q: Which is bigger?
(8
4

)
vs

(8
5

)
? Ans:

(8
4

)
= 70.

(8
5

)
= 56

13



Counting subsets - Example

Q: How many m-bit binary sequences contain exactly k ones?

Consider set A = {a1, . . . , am} and selecting S , a subset of size k . For example, say
m = 10, k = 3 and S = {a3, a7, a10}, then S records the positions of the 1’s, and can mapped to
the sequence 001 0001 001. Similarly, every m-bit sequence with exactly k ones can be mapped
to a subset of size k . Hence, there is a bijection:
f : m-bit sequence with exactly k ones → subsets of size k from size m-set, and
|m-bit sequence with exactly k ones| = |subsets of size k| =

(
m
k

)
.

Q: Suppose we want to buy 10 donuts. There are 5 donut varieties – chocolate, lemon-filled,
sugar, glazed, plain. What is the number of ways to select the 10 donuts?

Recall that the number of ways of selecting 10 donuts with 5 varieties = number of 14-bit
sequences with exactly 4 ones =

(14
4

)
= 1001.

Q: What is the number of ways of choosing n things with k varieties?

Ans: Equal to the number of n + k − 1-bit sequences with exactly k − 1 ones =
(
n+k−1
k−1

)
.
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Questions?
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