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Recap

Random variables R1 and R2 are independent if for all x1 ∈ Range(R1) and x2 ∈ Range(R2),
events [R1 = x1] and [R2 = x2] are independent.

If R1 and R2 are independent, E[R1R2] = E[R1]E[R2]. In general, E[R1R2] ̸= E[R1]E[R2].

Random variables R1,R2, . . . ,Rn are mutually independent if for all
x1 ∈ Range(R1), x2 ∈ Range(R2) . . . , xn ∈ Range(Rn), events [R1 = x1], [R2 = x2], . . . [Rn = xn]

are mutually independent.

Variance: Standard way to measure the deviation from the mean. For r.v. X ,
Var[X ] = E[(X − E[X ])2] =

∑
x∈Range(X )(x − µ)2 Pr[X = x ], where µ := E[X ].

Alternate Definition: Var[X ] = E[X 2]− (E[X ])2.

If X ∼ Ber(p), Var[X ] = p(1 − p).

If X ∼ Uniform({v1, v2, . . . vn}), Var[X ] =
[v2

1+v2
2+...v2

n ]
n −

(
[v1+v2+...vn]

n

)2
.
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Variance - Examples

Q: Calculate Var[W ], Var[Y ] and Var[Z ] whose PDF’s are given as:

W = 0 (with p = 1)

Y = −1 (with p = 1/2)

= +1 (with p = 1/2)

Z = −1000 (with p = 1/2)

= +1000 (with p = 1/2)

Recall that E[W ] = E[Y ] = E[Z ] = 0.

Var[W ] = E[W 2]− (E[W ])2 = E[W 2] =
∑

w∈Range(W ) w
2 Pr[W = w ] = 02(1) = 0. The

variance of W is zero because it can only take one value and the r.v. does not “vary”.
Var[Y ] = E[Y 2] =

∑
y∈Range(Y ) y

2 Pr[Y = y ] = (−1)2(1/2) + (1)2(1/2) = 1.

Var[Z ] = E[Z 2] =
∑

z∈Range(Z) z
2 Pr[Z = z ] = (−1000)2(1/2) + (1000)2(1/2) = 106.

Hence, the variance can be used to distinguish between r.v.’s that have the same mean.
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Variance - Examples

Q: If R ∼ Geo(p), calculate Var[R].

Var[R] = E[R2]− (E[R])2 = E[R2]− 1
p2

Recall that for a coin s.t. Pr[heads] = p, R is the r.v. equal to the number of coin tosses we
need to get the first heads. Let A be the event that we get a heads in the first toss. Using the
law of total expectation,

E[R2] = E[R2|A] Pr[A] + E[R2|Ac ] Pr[Ac ]

E[R2|A] = 1 (R2 = 1 if we get a heads in the first coin toss) and Pr[A] = p. Hence,

E[R2] = (1) (p) + E[R2|Ac ] (1 − p) ; E[R2|Ac ] =
∑
k=1

k2 Pr[R = k|Ac ]

Note that Pr[R = k|Ac ] = Pr[R = k | first toss is a tails] = (1 − p)k−2 p = Pr[R = k − 1]

=⇒ E[R2|Ac ] =
∑
k=1

k2 Pr[R = k − 1] =
∑
t=0

(t + 1)2 Pr[R = t] (t := k − 1)
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Variance - Examples

Continuing from the previous slide,

E[R2|Ac ] =
∑
t=0

(t + 1)2 Pr[R = t] =
∑
t=0

t2 Pr[R = t] + 2
∑
t=0

t Pr[R = t] +
∑
t=0

Pr[R = t]

=
∑
t=1

t2 Pr[R = t] + 2
∑
t=1

t Pr[R = t] +
∑
t=1

Pr[R = t] = E[R2] + 2E[R] + 1

Putting everything together,

E[R2] = (1) (p) + (E[R2] + 2E[R] + 1]) (1 − p) =⇒ p E[R2] = p + 2(1 − p)E[R] + (1 − p)E[1]

=⇒ p E[R2] = p +
2(1 − p)

p
+ (1 − p) (E[R] = 1

p , E[1] = 1)

=⇒ E[R2] =
2(1 − p)

p2 +
1
p

=⇒ E[R2] =
2 − p

p2

=⇒ Var[R] = E[R2]− (E[R])2 =
2 − p

p2 − 1
p2 =

1 − p

p2
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Standard Deviation

Standard Deviation: For r.v. X , the standard deviation in X is defined as:

σX :=
√

Var[X ] =
√
E[X 2]− (E[X ])2

Standard deviation has the same units as expectation.

Standard deviation for a “bell”-shaped
distribution indicates how wide the “main part”
of the distribution is.
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Properties of Variance

Q: For constants a, b and r.v. R, Var[a R + b] = a2Var[R].

Proof :

Var[aR + b] = E[(aR + b)2]− (E[aR + b])2 = E[a2R2 + 2abR + b2]− (E[aR] + E[b])2

= (a2E[R2] + 2abE[R] + b2)− (aE[R] + b)2

= (a2E[R2] + 2abE[R] + b2)− (a2(E[R])2 + 2abE[R] + b2)

= a2 [E[R2]− (E[R])2
]

=⇒ Var[aR + b] = a2Var[R]

Similarly, for the standard deviation,

σaR+b =
√

Var[aR + b] =
√
a2Var[R] = |a|σR

Note the difference from the property of expectation,

E[aR + b] = aE[R] + b
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Properties of Variance

Recall that for r.v’s R and S , E[R + S ] = E[R] +E[S ]. In general, such a property is not true for
the variance, i.e. variance of a sum is not necessarily equal to the sum of the variances.

If the r.v’s R and S are independent, Var[R + S ] = Var[R] + Var[S ].

Proof :

Var[R + S ] = E[(R + S)2]− (E[R + S ])2 = E[R2 + S2 + 2RS ]− (E[R] + E[S ])2

= E[R2 + S2 + 2RS ]− [(E[R])2 + (E[S ])2 + 2E[R]E[S ]]

= [E[R2]− (E[R])2] + [E[S2]− (E[S ])2] + 2(E[RS ]− E[R]E[S ])

= Var[R] + Var[S ] + 2(E[RS ]− E[R]E[S ])

Recall that if r.v. are independent, E[RS ] = E[R]E[S ],

=⇒ Var[R + S ] = Var[R] + Var[S ]
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Properties of Variance

Pairwise Independence: Random variables R1,R2,R3, . . .Rn are pairwise independent if for any
pair Ri and Rj , for x ∈ Range(Ri ) and y ∈ Range(Rj), events Pr[Ri = x ] and Pr[Rj = y ] are
pairwise independent implying that Pr[(Ri = x) ∩ (Rj = y)] = Pr[Ri = x ] Pr[Rj = y ].

We can prove that for any pair of pairwise independent r.v’s, Ri and Rj , E[RiRj ] = E[Ri ]E[Rj ].

For pairwise independent random variables R1,R2,R3, . . .Rn, Var[
∑n

i=1 Ri ] =
∑n

i=1 Var[Ri ].

Proof : Var[R1 + R2 + . . .Rn] = E[(R1 + R2 + . . .Rn)
2]− (E[R1 + R2 + . . .Rn])

2

=
n∑

i=1

[E[R2
i ]− (E[Ri ])

2] + 2
∑

i,j|1≤i<j≤n

[E[RiRj ]− E[Ri ]E[Rj ]]

=⇒ Var[R1 + R2 + . . .Rn] =
n∑

i=1

Var[Ri ] (Since the r.v’s are pairwise independent)

Importantly, we do not require the r.v’s to be mutually independent. Mutual independence
=⇒ pairwise independence, but pairwise independence ̸⇒ mutual independence.
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Variance - Examples

Q: If R ∼ Bin(n, p), calculate Var[R].

Define Ri to be the indicator random variable that we get a heads in toss i of the coin. Recall
that R is the random variable equal to the number of heads in n tosses.

Hence,

R = R1 + R2 + . . .+ Rn =⇒ Var[R] = Var[R1 + R2 + . . .+ Rn]

Since R1,R2, . . . ,Rn are mutually independent indicator random variables,

Var[R] = Var[R1] + Var[R2] + . . .+ Var[Rn]

Since the variance of an indicator (Bernoulli) r.v. is p(1 − p),

Var[R] = n p (1 − p).
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Questions?
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Matching Birthdays

Q: In a class of n students, what is the probability that two students share the same birthday?
Assume that (i) each student is equally likely to be born on any day of the year, (ii) no leap years
and (iii) student birthdays are independent of each other.

For d := 365 (since no leap years),

Pr[two students share the same birthday] = 1 − d × (d − 1)× (d − 2)× . . . (d − (n − 1))
dn

Q: On average, how many pairs of students have matching birthdays?

Define M to be the number of pairs of students with matching birthdays. For a fixed ordering of
the students, let Xi,j be the indicator r.v. corresponding to the event Ei,j that the birthdays of
students i and j match. Hence,

M =
∑

i,j|1≤i<j≤n

Xi,j =⇒ E[M] = E[
∑

i,j|1≤i<j≤n

Xi,j ] =
∑

i,j|1≤i<j≤n

E[Xi,j ] =
∑

i,j|1≤i<j≤n

Pr[Ei,j ]

(Linearity of expectation)
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Matching Birthdays

For a pair of students i , j , let Bi be the r.v. equal to the day of student i ’s birthday. Range(Bi )
= {1,2,. . . , d}. For all k ∈ [d ], Pr[Bi = k] = 1/d (each student is equally likely to be born on
any day of the year).

Ei,j = (Bi = 1 ∩ Bj = 1) ∪ (Bi = 2 ∩ Bj = 2) ∪ . . .

=⇒ Pr[Ei,j ] =
d∑

k=1

Pr[Bi = k ∩ Bj = k] =
d∑

k=1

Pr[Bi = k] Pr[Bj = k] =
d∑

k=1

1
d2 =

1
d

(student birthdays are independent of each other)

=⇒ E[M] =
∑

i,j|1≤i<j≤n

Pr[Ei,j ] =
1
d

∑
i,j|1≤i<j≤n

(1) =
1
d
[(n − 1) + (n − 2) + . . .+ 1] =

n (n − 1)
2d

Hence, in our class of 42 students, on average, there are (21) (41)
365 = 2.35 students with

matching birthdays.
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