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Recap

Two random variables R1 and R2 are independent if for all x1 ∈ Range(R1) and x2 ∈ Range(R2),
events [R1 = x1] and [R2 = x2] are independent. More formally, we require that for all
x1 ∈ Range(R1) and x2 ∈ Range(R2),

Pr[(R1 = x1) ∩ (R2 = x2)] = Pr[(R1 = x1)] Pr[(R2 = x2)].
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Independence of random variables

Q: If R1 and R2 are not independent, is E[R1 + R2] = E[R1] + E[R2]?

Yes! Recall the derivation of the linearity of expectation. We never assumed that R1 and R2 are
independent for the proof and the linearity of expectation holds regardless of whether the random
variables are independent.

Q: If R1 and R2 are independent, is E[R1R2] = E[R1]E[R2]? Yes!

E[R1R2] =
∑

x∈Range(R1R2)

x Pr[R1R2 = x ] =
∑

r1∈Range(R1),r2∈Range(R2)

r1r2 Pr[R1 = r1 ∩ R2 = r2]

(x = r1 r2)

=
∑

r1∈Range(R1)

∑
r2∈Range(R2)

r1r2 Pr[R1 = r1 ∩ R2 = r2] (Splitting the sum)

=
∑

r1∈Range(R1)

∑
r2∈Range(R2)

r1r2 Pr[R1 = r1] Pr[R2 = r2] (Independence)

=
∑

r1∈Range(R1)

r1 Pr[R1 = r1]
∑

r2∈Range(R2)

r2 Pr[R2 = r2] = E[R1]E[R2]
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Independence of random variables

Alternate definition of independence – two random variables R1 and R2 are independent if for all
x1 ∈ Range(R1) and x2 ∈ Range(R2),

Pr[(R1 = x1)|(R2 = x2)] = Pr[(R1 = x1)]

Pr[(R2 = x2)|(R1 = x1)] = Pr[(R2 = x2)]

Similar to events, random variables R1,R2, . . . ,Rn are mutually independent if for all
x1, x2, . . . , xn, events [R1 = x1], [R2 = x2], . . . [Rn = xn] are mutually independent.

Mutual Independence of events: A set of events is said to be mutually independent if the
probability of each event in the set is the same no matter which of the events has occurred. For
events E1,E2 and E3 to be mutually independent, all the following equalities should hold:

Pr[E1 ∩ E2] = Pr[E1] Pr[E2] Pr[E1 ∩ E3] = Pr[E1] Pr[E3]

Pr[E2 ∩ E3] = Pr[E2] Pr[E3] Pr[E1 ∩ E2 ∩ E3] = Pr[E1] Pr[E2] Pr[E3].

Alternatively, (i) ∀i and j ̸= i , Pr[Ei |Ej ] = Pr[Ei ] and (ii) ∀i and j , k ̸= i , Pr[Ei |Ej ∩ Ek ] = Pr[Ei ].
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Expectation/Independence - Examples

Q: Suppose there is a dinner party where n people check in their coats. The coats are mixed up
during dinner, so that afterward each person receives a random coat. In particular, each person
gets their own coat with probability 1

n . What is the expected number of people who get their
own coat?

Let G be the number of people that get their own coat. We wish to compute E[G ]. Define Gi to
be the indicator r.v. that person i gets their own coat. Observe that G = G1 +G2 + . . .+Gn and
by linearity of expectation E[G ] = E[G1] + E[G2] + . . .+ E[Gn]. For each i , E[Gi ] = Pr[Gi ] =

1
n .

Hence, E[G ] = 1 meaning that on average one person will correctly receive their coat.

Q: If Gi is the indicator r.v. that person i gets their own coat, are the random variables
G1,G2, . . .Gn mutually independent?

No. Since if G1 = G2 = . . .Gn−1 = 1, then,
Pr[Gn = 1|(G1 = 1 ∩ G2 = 1 ∩ . . . ∩ Gn−1 = 1)] = 1 ̸= 1

n = Pr[Gn = 1]. Conditioning on
(G1,G2, . . . ,Gn−1) changes Pr[Gn], and hence the r.v’s are not independent. Notice that we
have used the linearity of expectation even though these r.v’s are not mutually independent.
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Questions?
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Joint distributions

For a given experiment, we are often interested not only in the PDFs of individual random
variables but also in the relationships between two or more random variables. For example, we
might be interested in the mean time of failure and its connection with different number of
components in the system.

A joint distribution between r.v’s X and Y can be specified by its joint PDF as follows:

PDFX ,Y [x , y ] = Pr[X = x ∩ Y = y ]

If X and Y are independent random variables, PDFX ,Y [x , y ] = PDFX [x ]PDFY [y ].

If Range[X ] = {x1, x2, . . . xn}, Range[Y ] = {y1, y2, . . . yn}, then for x ∈ Range(X ),
[X = x ] = [X = x ∩ y = y1] ∪ [X = x ∩ y = y2] ∪ . . . ∪ [X = x ∩ y = yn]

=⇒ Pr[X = x ] = Pr[X = x ∩ y = y1] + Pr[X = x ∩ y = y2] + . . .+ Pr[X = x ∩ y = yn].

=⇒ PDFX [x ] =
∑

i PDFX ,Y [x , yi ].
Hence, we can obtain the distribution for each r.v. from the joint distribution by “marginalizing”
over the other r.v’s.
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Joint distributions - Examples

Q: Suppose that 3 batteries are randomly chosen from a group of 3 new, 4 used but still working,
and 5 defective batteries. If the batteries are distinct and we let X and Y denote, respectively, the
number of new and used but still working batteries that are chosen, completely specify PDFX ,Y .

For i ∈ [3], j ∈ [3], PDFX ,Y [i , j ] = Pr[X = i ∩ Y = j |X + Y ≤ 3] = (3i ) (
4
j) (

5
3−i−j)

(12
3 )

.

PDFX ,Y [0, 0] =
(53)
(12

3 )
= 10/220, PDFX ,Y [1, 2] =

(31) (
4
2) (

5
2)

(12
3 )

= 18/220.
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Questions?
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Deviation from the Mean

We have developed tools to calculate the mean of random variables. Getting a handle on the
expectation is useful because it tell us what would happen on average.

Summarizing the PDF using the mean is typically not enough. We also want to know how
“spread” the distribution is.

Example: Consider three random variables W , Y and Z whose PDF’s can be given as:

W = 0 (with p = 1)

Y = −1 (with p = 1/2)

= +1 (with p = 1/2)

Z = −1000 (with p = 1/2)

= +1000 (with p = 1/2)

Though E[W ] = E[Y ] = E[Z ] = 0, these distributions are quite different. Z can take values
really far away from its expected value, while W can take only one value equal to the mean.
Hence, we want to understand how much does a random variable “deviate” from its mean.
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Variance

Standard way to measure the deviation from the mean is to calculate the variance. For r.v. X ,

Var[X ] = E[(X − E[X ])2] =
∑

x∈Range(X )

(x − µ)2 Pr[X = x ] (where µ := E[X ])

Intuitively, the variance measures the weighted (by the probability) average of how far (in
squared distance) the random variable is from the mean µ.

Q: If X ∼ Ber(p), compute Var[X ].

Since X is a Bernoulli random variable, X = 1 with probability p and X = 0 with probability
1 − p. Recall that E[X ] = µ = (0)(1 − p) + (1)(p) = p.

Var[X ] =
∑

x∈{0,1}

(x − p)2 Pr[X = x ] = (0 − p)2 Pr[X = 0] + (1 − p)2 Pr[X = 1]

= p2(1 − p) + (1 − p)2p = p(1 − p)[p + 1 − p] = p(1 − p).

For a Bernoulli r.v. X , Var[X ] = p(1− p) ≤ 1
4 . Hence, the variance is maximum when p = 1/2

(equal probability of getting heads/tails).
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Variance

Alternate definition of variance: Var[X ] = E[X 2]− µ2 = E[X 2]− (E[X ])2.

Proof : Var[X ] = E[(X − E[X ])2] =
∑

x∈Range(X )

(x − µ)2 Pr[X = x ]

=
∑

x∈Range(X )

(x2 − 2µx + µ2) Pr[X = x ]

=
∑

x∈Range(X )

(x2 Pr[X = x ])− (2µx Pr[X = x ]) + (µ2) Pr[X = x ]

=
∑

x∈Range(X )

x2 Pr[X = x ]− 2µ
∑

x∈Range(X )

x Pr[X = x ] + µ2
∑

x∈Range(X )

Pr[X = x ]

(Since µ is a constant does not depend on the x in the sum.)

= E[X 2]− 2µE[X ] + µ2
∑

x∈Range(X )

Pr[X = x ] (Definition of E[X ] and E[X 2])

= E[X 2]− 2µ2 + µ2 (Definition of µ)

=⇒ Var[X ] = E[X 2]− µ2 = E[X 2]− (E[X ])2. 9



Back to throwing dice

Q: For a standard dice, if X is the r.v. equal to the number that comes up, compute Var[X ].

Recall that, for a standard dice, X ∼ Uniform({1, 2, 3, 4, 5, 6}) and hence,

E[X 2] =
∑

x∈{1,2,3,4,5,6}

x2 Pr[X = x ] =
1
6
[
12 + 22 + . . .+ 62] = 91

6

(E[X ])2 =

 ∑
x∈{1,2,3,4,5,6}

x Pr[X = x ]

2

=

(
1
6
[1 + 2 + . . .+ 6]

)2

=
49
4

=⇒ Var[X ] =
91
6

− 49
4

≈ 2.917

Q: If X ∼ Uniform({v1, v2, . . . vn}), compute Var[X ].

E[X ] =
n∑

i=1

vi Pr[X = vi ] =
1
n
[v1 + v2 + . . . vn] ; E[X 2] =

1
n
[v2

1 + v2
2 + . . . v2

n ].

=⇒ Var[X ] =
[v2

1 + v2
2 + . . . v2

n ]

n
−
(
[v1 + v2 + . . . vn]

n

)2
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Questions?
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