CMPT 210: Probability and Computing

Lecture 16

Sharan Vaswani
March 9, 2023

Recap

Expectation/mean of a random variable R is denoted by $\mathbb{E}[R]$ and "summarizes" its distribution. Formally, $\mathbb{E}[R]:=\sum_{\omega \in \mathcal{S}} \operatorname{Pr}[\omega] R[\omega]$
Alternate definition of expectation: $\mathbb{E}[R]=\sum_{x \in \operatorname{Range}(R)} \times \operatorname{Pr}[R=x]$.
Linearity of Expectation: For n random variables $R_{1}, R_{2}, \ldots, R_{n}$ and constants $a_{1}, a_{2}, \ldots, a_{n}$, $\mathbb{E}\left[\sum_{i=1}^{n} a_{i} R_{i}\right]=\sum_{i=1}^{n} a_{i} \mathbb{E}\left[R_{i}\right]$.
Conditional Expectation: For random variable R, the expected value of R conditioned on an event A is given by:

$$
\mathbb{E}[R \mid A]=\sum_{x \in \operatorname{Range}(R)} x \operatorname{Pr}[R=x \mid A]
$$

Law of Total Expectation: If R is a random variable $\mathcal{S} \rightarrow V$ and events $A_{1}, A_{2}, \ldots A_{n}$ form a partition of the sample space, then,

$$
\mathbb{E}[R]=\sum_{i} \mathbb{E}\left[R \mid A_{i}\right] \operatorname{Pr}\left[A_{i}\right]
$$

Expectation - Examples

For a random variable $X: \mathcal{S} \rightarrow V$ and a function $g: V \rightarrow \mathbb{R}$, we define $\mathbb{E}[g(X)]$ as follows:

$$
\mathbb{E}[g(X)]:=\sum_{x \in \operatorname{Range}(X)} g(x) \operatorname{Pr}[X=x]
$$

If $g(x)=x$ for all $x \in \operatorname{Range}(X)$, then $\mathbb{E}[g(X)]=\mathbb{E}[X]$.
Q: For a standard dice, if X is the r.v. corresponding to the number that comes up on the dice, compute $\mathbb{E}\left[X^{2}\right]$ and $(\mathbb{E}[X])^{2}$

For a standard dice, $X \sim \operatorname{Uniform}(\{1,2,3,4,5,6\})$ and hence,

$$
\begin{aligned}
& \mathbb{E}\left[X^{2}\right]= \sum_{x \in\{1,2,3,4,5,6\}} x^{2} \operatorname{Pr}[X=x]=\frac{1}{6}\left[1^{2}+2^{2}+\ldots+6^{2}\right]=\frac{91}{6} \\
&(\mathbb{E}[X])^{2}=\left(\sum_{x \in\{1,2,3,4,5,6\}} x \operatorname{Pr}[X=x]\right)^{2}=\left(\frac{1}{6}[1+2+\ldots+6]\right)^{2}=\frac{49}{4}
\end{aligned}
$$

Randomized Quick Select

Given an array A of n distinct numbers, return the $k^{\text {th }}$ smallest element in A for $k \in[1, n]$.

```
Algorithm Randomized Quick Select
    1: function QuickSelect(A,k)
    2: If Length }(\textrm{A})=1\mathrm{ , return }\textrm{A}[1]\mathrm{ .
    3: Select p\inA uniformly at random.
    4: Construct sets Left := {x\inA|x<p} and Right:={x\inA|x>p}.
    5:r= |Left }|+1\mathrm{ {Element p is the r rh smallest element in A.}
    6: if }k=r\mathrm{ then
    7: return p
    8: else if k<r}\mathrm{ then
    9: QuickSelect(Left, k)
10: else
11: QuickSelect(Right, k-r)
    end if
```


Randomized Quick Select

If $A=\{2,7,0,1,3\}$ and we wish to find the $2^{\text {nd }}$ smallest element meaning that $k=2$.
According to the algorithm, $p \sim \operatorname{Uniform}(A)$. Say $p=3$.
Then after step 1, Left $=\{2,0,1\}$ and Right $=\{7\} . r:=\mid$ Left $\mid+1=3+1=4$. Since $r>k$, we recurse on the left-hand side by calling the algorithm on $\{2,0,1\}$ with $k=2$.
$p \sim \operatorname{Uniform}(\{2,0,1\})$. Say $p=1$. After step 2, Left $=\{0\}$ and Right $=\{2\}$.
$r:=\mid$ Left $\mid+1=1+1=2$. Since $r=k$, we terminate the recursion and return $p=1$ as the second-smallest element in A.
Q: Run the algorithm if $p=0$ in the first step? Ans: Left $=\{ \}$ and Right $=\{2,7,1,3\}$. Hence $r=1<k=2$. Hence we will recurse on the right-hand side by calling the algorithm on $\{2,7,1,3\}$ with $k=1$.

Q: Run the algorithm if $p=1$ in the first step? Ans: $\operatorname{Left}=\{0\}$ and Right $=\{2,7,3\}$. Hence $r=1+1=2$. Hence we will return the pivot element $p=1$.

Randomized Quick Select - Analysis

Alternate way: Sort the elements in A and return the $k^{\text {th }}$ element in the sorted list. Uses $O(n \log (n))$ comparisons.

Q: Can Randomized Quick Select do better - what is the maximum number of comparisons required by Randomized Quick Select in the worst-case? Ans: $O\left(n^{2}\right)$ when $k=n$ and the pivots are chosen in increasing order.

In the worst case, Randomized Quick Select is worse than the naive strategy of sorting and returning the $k^{\text {th }}$ element. What about the average (over the pivot selection) case?

Claim: For any array A with n distinct elements, and for any $k \in[n]$, Randomized Quick Select performs fewer than $8 n$ comparisons in expectation.

In order to prove this claim, we will need to prove the following lemma.

Randomized Quick Select - Analysis

Lemma: The child sub-problem's array (either Left or Right) after the partitioning (in Line 4 of the algorithm) has expected size smaller than $\frac{7 n}{8}$.
Proof: Define a "good" event \mathcal{E} that the randomly chosen pivot splits the array roughly in half.
Formally, if n is the length of the array, then \mathcal{E} is the event that $r \in\left(\frac{n}{4}, \frac{3 n}{4}\right]$ (for simplicity, let us assume that n is divisible by 4.) Since p is chosen uniformly at random, $\operatorname{Pr}[\mathcal{E}]=\frac{3 n / 4-n / 4}{n}=\frac{1}{2}$. Recall that \mid Left $\mid=r-1$ and \mid Right $\mid=n-r$. Hence if event \mathcal{E} happens, then \mid Left $\left\lvert\,<\frac{3 n}{4}\right.$ and \mid Right $\left\lvert\,<\frac{3 n}{4}\right.$. Hence, \mid Child $\left\lvert\,<\frac{3 n}{4}\right.$. If event \mathcal{E} does not happen, in the worst-case, \mid Child $\mid<n$. By using the law of total expectation,

$$
\begin{aligned}
\mathbb{E}[\mid \text { Child } \mid] & =\mathbb{E}[\mid \text { Child }| | \mathcal{E}] \operatorname{Pr}[\mathcal{E}]+\mathbb{E}\left[\mid \text { Child }| | \mathcal{E}^{c}\right] \operatorname{Pr}\left[\mathcal{E}^{c}\right] \\
& <\frac{3 n}{4} \frac{1}{2}+(n) \frac{1}{2}=\frac{7 n}{8} .
\end{aligned}
$$

Hence on average, the size of the child sub-problem is smaller than $\frac{7 n}{8}$, proving the lemma.

Randomized Quick Select - Analysis

In order to upper-bound the total number of comparisons, we use the Lemma with an induction on n. Recall that we need to prove that Randomized Quick Select requires fewer than $8 n$ comparisons in expectation.

Base case: If $n=1$, then we require $0<8(1)$ comparisons. Hence the base case is satisfied.
Inductive Step: Assume that for all $m<n$, \mathbb{E} [Total number of comparisons for size m array $]<8 \mathrm{~m}$.
\mathbb{E} [Total number of comparisons for size n array]
$=\mathbb{E}[(n-1)+$ Total number of comparisons in child sub-problem $]$
$=(n-1)+\mathbb{E}[$ Total number of comparisons in child sub-problem $]$ (Linearity of expectation)
$<(n-1)+8 \mathbb{E}[\mid$ Child $\mid]$
$<(n-1)+8 \frac{7 n}{8}<8 n$.
(Induction hypothesis)

Hence, for any $k \in[n]$, on average, Randomized Quick Select requires fewer than $8 n$

Questions?

Independence of random variables

We define two random variables R_{1} and R_{2} to be independent if for all $x_{1} \in \operatorname{Range}\left(R_{1}\right)$ and $x_{2} \in \operatorname{Range}\left(R_{2}\right)$, events $\left[R_{1}=x_{1}\right]$ and $\left[R_{2}=x_{2}\right]$ are independent. More formally, we require,

$$
\operatorname{Pr}\left[\left(R_{1}=x_{1}\right) \cap\left(R_{2}=x_{2}\right)\right]=\operatorname{Pr}\left[\left(R_{1}=x_{1}\right)\right] \operatorname{Pr}\left[\left(R_{2}=x_{2}\right)\right]
$$

Q: Suppose we toss three independent, unbiased coins. Let C be r.v. equal to the number of heads that appear and M be the r.v. that is equal to 1 if all the coins match. Are random variables C and M independent?

Range $(C)=\{0,1,2,3\}$ and Range $(M)=\{0,1\} . \operatorname{Pr}[C=3]=\frac{1}{8}$ and $\operatorname{Pr}[M=1]=\frac{1}{4}$. $\operatorname{Pr}[(C=3) \cap(M=1)]=\frac{1}{8} \neq \frac{1}{32}=\operatorname{Pr}[C=3] \operatorname{Pr}[M=1]$. Hence, C and M are not independent.

Independence - Examples

Q: If H_{1} is the indicator r.v. equal to one if the first toss is a heads, are H_{1} and M independent?
$\operatorname{Pr}\left[H_{1}=1\right]=\operatorname{Pr}\left[H_{1}=0\right]=\frac{1}{2}, \operatorname{Pr}[M=1]=\frac{1}{4}, \operatorname{Pr}[M=0]=\frac{3}{4}$.
$\operatorname{Pr}\left[H_{1}=0 \cap M=1\right]=\operatorname{Pr}[\{T T T\}]=\frac{1}{8}=\operatorname{Pr}\left[H_{1}=0\right] \operatorname{Pr}[M=1]$.
$\operatorname{Pr}\left[H_{1}=1 \cap M=1\right]=\operatorname{Pr}[\{H H H\}]=\frac{1}{8}=\operatorname{Pr}\left[H_{1}=1\right] \operatorname{Pr}[M=1]$.
$\operatorname{Pr}\left[H_{1}=0 \cap M=0\right]=\operatorname{Pr}[\{T H H, T H T, T T H\}]=\frac{3}{8}=\operatorname{Pr}\left[H_{1}=0\right] \operatorname{Pr}[M=0]$.
$\operatorname{Pr}\left[H_{1}=1 \cap M=0\right]=\operatorname{Pr}[\{H H T, H T H, H T T\}]=\frac{3}{8}=\operatorname{Pr}\left[H_{1}=1\right] \operatorname{Pr}[M=0]$.
Hence, H_{1} and M are independent.

