
CMPT 210: Probability and Computing

Lecture 15

Sharan Vaswani

March 3, 2023



Recap

Expectation/mean of a random variable R is denoted by E[R] and “summarizes” its distribution.
Formally, E[R] :=

∑
ω∈S Pr[ω]R[ω]

Example: When throwing a standard dice, if R is the random variable equal to the number on
the dice. E[R] =

∑
i∈{1,2,...,6}

1
6 [i ] =

7
2 .

Alternate definition of expectation: E[R] =
∑

x∈Range(R) x Pr[R = x ].

This definition does not depend on the sample space.

Example: If IA is the indicator random variable for event A, then
E[IA] = Pr[IA = 1](1) + Pr[IA = 0](0) = Pr[A]. For IA, the expectation is equal to the
probability that event A happens.

Linearity of Expectation: For n random variables R1,R2, . . . ,Rn and constants a1, a2, . . . , an,
E
[∑n

i=1 aiRi

]
=

∑n
i=1 ai E[Ri ].
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Recap

If R ∼ Bernoulli(p), E[R] = p. Example: When tossing a coin, if R is the random variable equal
to 1 if we get a heads.

If R ∼ Uniform({v1, . . . , vn}), E[R] = v1+v2+...+vn
n . Example: When throwing an n-sided dice

with numbers v1, . . . vn, if R is the random variable equal to the number.

If R ∼ Bin(n, p), E[R] = np. Example: When tossing n independent coins, if R is the random
variable equal to the number of heads.

If R ∼ Geo(p), E[R] = 1
p . Example: When tossing a coin repeatedly, if R is the random variable

equal to the number of tosses required to get the first heads.
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Expectation - Examples - Coupon Collector Problem

Q: In a game started by a coffee shop, each time we buy a coffee, we get a coupon. Each
coupon has a color (amongst n different colors) and each time, the color of the coupon is
selected uniformly at random from amongst the n colors. If we collect at least one coupon of
each color, we can claim a free coffee. On average, how many coupons should we collect (coffees
we should buy) to claim the prize?

Suppose we get the following sequence of coupons:

blue, green, green, red , blue, orange, blue, orange, gray

Let us partition this sequence into segments such that a segment ends when we collect a coupon
of a new color we did not have before. For this example,

blue︸︷︷︸
S1

green︸ ︷︷ ︸
S2

green, red︸ ︷︷ ︸
S3

blue, orange︸ ︷︷ ︸
S4

blue, orange, gray︸ ︷︷ ︸
S5

If the number of segments is equal to n, by definition, we will have collected coupons of the n

different colors. Define Xk to be the random variable equal to the length of segment Sk and T

to be the total number of coupons required to have at least one coupon per color. 3



Expectation - Examples - Coupon Collector Problem

T = X1 + X2 + . . .Xn. We wish to compute E[T ]. By linearity of expectation,
E[T ] = E[X1] + E[X2] + . . .+ E[Xn].

Let us calculate E[Xk ]. If we are on segment k , we have seen k − 1 colors before. Hence, the
probability of seeing a new (one that we have not seen before) colored coupon in Sk is n−(k−1)

n .

Xk ∼ Geo
(

n−(k−1)
n

)
, and we know that E[Xk ] =

n
n−k+1 .

E[T ] =
n∑

k=1

n

n − k + 1
= n

[
1
n
+

1
n − 1

+ . . .+
1
1

]
≤ n

[
1 +

∫ n

1

dx

x

]
= n [1 + ln(n)]

We also know that E[T ] ≥ n ln(n+ 1). Hence, E[T ] = O(n ln(n)), meaning that we need to buy
O(n ln(n)) coffees to collect coupons of n colors and get a free coffee. 4



Questions?
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Max Cut

Given a graph G = (V, E), partition the graph’s vertices into two complementary sets S and T ,
such that the number of edges between the set S and the set T is as large as possible.

Max Cut has applications to VLSI circuit design.

Equivalently, find a set U ⊆ V of vertices that solve the following

max
U⊆V

|δ(U)|where δ(U) := {(u, v) ∈ E|u ∈ U and v /∈ U}

Here, δ(U) is referred to as the “cut” corresponding to the set U .
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Max Cut

Max Cut is NP-hard (Karp, 1972), meaning that there is no polynomial (in |E|) time
algorithm that solves Max Cut exactly.
We want to find an approximate solution U such that, if OPT is the size of the optimal cut,
then, |δ(U)| ≥ αOPT where α ∈ (0, 1) is the multiplicative approximation factor.
Randomized algorithm that guarantees an approximate solution with α = 1

2 with probability
close to 1 (Erdos, 1967).
Algorithm with α = 0.878. (Goemans and Williamson, 1995).
Under some technical conditions, no efficient algorithm has α > 0.878 (Khot et al, 2004).

We will use Erdos’ randomized algorithm and first prove the result in expectation. We wish to
prove that for U returned by Erdos’ algorithm,

E[|δ(U)|] ≥ 1
2
OPT

Algorithm: Select U to be a random subset of V i.e. for each vertex v , choose v to be in the
set U independently with probability 1

2 (do not even look at the edges!).
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Max Cut

Claim: For Erdos’ algorithm, E[|δ(U)|] ≥ 1
2OPT .

Proof: For each edge (u, v) ∈ E , let Xu,v be the indicator random variable equal to 1 iff the
event Eu,v = {(u, v) ∈ δ(U)} happens.

E[|δ(U)|] = E

 ∑
(u,v)∈E

Xu,v

 =
∑

(u,v)∈E

E [Xu,v ] =
∑

(u,v)∈E

Pr[Eu,v ]

(Linearity of expectation, and Expectation of indicator r.v’s.)

Pr[Eu,v ] = Pr[(u, v) ∈ δ(U)] = Pr [(u ∈ U ∩ v /∈ U) ∪ (u /∈ U ∩ v ∈ U)]
= Pr [(u ∈ U ∩ v /∈ U)] + Pr [(u /∈ U ∩ v ∈ U)] (Union rule for mutually exclusive events)

Pr[Eu,v ] = Pr[u ∈ U ] Pr[v /∈ U ] + Pr[u /∈ U ] Pr[v ∈ U ] = 1
2

1
2
+

1
2

1
2
=

1
2
.

(Independent events)

=⇒ E[|δ(U)|] =
∑

(u,v)∈E

Pr[Eu,v ] =
|E|
2

≥ OPT
2

.
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Questions?
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Conditional Expectation

Similar to probabilities, expectations can be conditioned on some event.

For random variable R, the expected value of R conditioned on an event A is given by:

E[R|A] =
∑

x∈Range(R)

x Pr[R = x |A]

Q: If we throw a standard dice and define R to be the random variable equal to the number that
comes up, what is the expected value of R given that the number is at most 4?

Let A be the event that the number is at most 4.
Pr[R = 1|A] = Pr[(R=1)∩A]

Pr[A] = Pr[R=1]
Pr[A] = 1/6

4/6 = 1/4.
Pr[R = 2|A] = Pr[R = 3|A] = Pr[R = 4|A] = 1

4 and Pr[R = 5|A] = Pr[R = 6|A] = 0.

E[R|A] =
∑

x∈{1,2,3,4}

x Pr[R = x |A] = 1
4
[1 + 2 + 3 + 4] =

5
2
.

Q: What is the expected value of R given that the number is at least 4? Ans:
E[R|A] =

∑
x∈{4,5,6} x Pr[R = x |A] = 1

3 [4 + 5 + 6] = 5. 8



Law of Total Expectation

If R is a random variable S → V and events A1,A2, . . .An form a partition of the sample space
i.e. for all i , j , Ai ∩ Aj = ∅ and A1 ∪ A2 ∪ . . . ∪ An = S, then,

E[R] =
∑
i

E[R|Ai ] Pr[Ai ] .

Proof :

E[R] =
∑

x∈Range(R)

x Pr[R = x ] =
∑

x∈Range(R)

x
∑
i

Pr[R = x |Ai ] Pr[Ai ]

(Law of total probability)

=
∑
i

Pr[Ai ]
∑

x∈Range(R)

x Pr[R = x |Ai ]

=⇒ E[R] =
∑
i

Pr[Ai ]E[R|Ai ].
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Conditional Expectation - Examples

Q: Suppose that 49.6% of the people in the world are male and the rest female. If the expected
height of a randomly chosen male is 5 feet 11 inches, while the expected height of a randomly
chosen female is 5 feet 5 inches, what is the expected height of a randomly chosen person?

Define H to be the random variable equal to the height (in feet) of a randomly chosen person.
Define M to be the event that the person is male and F the event that the person is female.
We wish to compute E[H] and we know that E[H|M] = 5 + 11

12 and E[H|F ] = 5 + 5
12 .

Pr[M] = 0.496 and Pr[F ] = 1 − 0.496 = 0.504.
Hence, E[H] = E[H|M] Pr[M] + E[H|F ] Pr[F ] = 71

12 (0.496) + 65
12 (0.504).
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Questions?
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