CMPT 210: Probability and Computing

Lecture 15

Sharan Vaswani
March 3, 2023

Recap

Expectation/mean of a random variable R is denoted by $\mathbb{E}[R]$ and "summarizes" its distribution.
Formally, $\mathbb{E}[R]:=\sum_{\omega \in \mathcal{S}} \operatorname{Pr}[\omega] R[\omega]$
Example: When throwing a standard dice, if R is the random variable equal to the number on the dice. $\mathbb{E}[R]=\sum_{i \in\{1,2, \ldots, 6\}} \frac{1}{6}[i]=\frac{7}{2}$.
Alternate definition of expectation: $\mathbb{E}[R]=\sum_{x \in \operatorname{Range}(R)} \times \operatorname{Pr}[R=x]$.
This definition does not depend on the sample space.
Example: If \mathcal{I}_{A} is the indicator random variable for event A, then
$\mathbb{E}\left[\mathcal{I}_{A}\right]=\operatorname{Pr}\left[\mathcal{I}_{A}=1\right](1)+\operatorname{Pr}\left[\mathcal{I}_{A}=0\right](0)=\operatorname{Pr}[A]$. For \mathcal{I}_{A}, the expectation is equal to the probability that event A happens.

Linearity of Expectation: For n random variables $R_{1}, R_{2}, \ldots, R_{n}$ and constants $a_{1}, a_{2}, \ldots, a_{n}$, $\mathbb{E}\left[\sum_{i=1}^{n} a_{i} R_{i}\right]=\sum_{i=1}^{n} a_{i} \mathbb{E}\left[R_{i}\right]$.

Recap

If $R \sim \operatorname{Bernoulli}(p), \mathbb{E}[R]=p$. Example: When tossing a coin, if R is the random variable equal to 1 if we get a heads.

If $R \sim \operatorname{Uniform}\left(\left\{v_{1}, \ldots, v_{n}\right\}\right), \mathbb{E}[R]=\frac{v_{1}+v_{2}+\ldots+v_{n}}{n}$. Example: When throwing an n-sided dice with numbers $v_{1}, \ldots v_{n}$, if R is the random variable equal to the number.
If $R \sim \operatorname{Bin}(n, p), \mathbb{E}[R]=n p$. Example: When tossing n independent coins, if R is the random variable equal to the number of heads.
If $R \sim \operatorname{Geo}(p), \mathbb{E}[R]=\frac{1}{p}$. Example: When tossing a coin repeatedly, if R is the random variable equal to the number of tosses required to get the first heads.

Expectation - Examples - Coupon Collector Problem

Q: In a game started by a coffee shop, each time we buy a coffee, we get a coupon. Each coupon has a color (amongst n different colors) and each time, the color of the coupon is selected uniformly at random from amongst the n colors. If we collect at least one coupon of each color, we can claim a free coffee. On average, how many coupons should we collect (coffees we should buy) to claim the prize?

Suppose we get the following sequence of coupons:
blue, green, green, red, blue, orange, blue, orange, gray

Let us partition this sequence into segments such that a segment ends when we collect a coupon of a new color we did not have before. For this example,

If the number of segments is equal to n, by definition, we will have collected coupons of the n different colors. Define X_{k} to be the random variable equal to the length of segment S_{k} and T to be the total number of coupons required to have at least one coupon per color.

Expectation - Examples - Coupon Collector Problem

$T=X_{1}+X_{2}+\ldots X_{n}$. We wish to compute $\mathbb{E}[T]$. By linearity of expectation, $\mathbb{E}[T]=\mathbb{E}\left[X_{1}\right]+\mathbb{E}\left[X_{2}\right]+\ldots+\mathbb{E}\left[X_{n}\right]$.
Let us calculate $\mathbb{E}\left[X_{k}\right]$. If we are on segment k, we have seen $k-1$ colors before. Hence, the probability of seeing a new (one that we have not seen before) colored coupon in S_{k} is $\frac{n-(k-1)}{n}$. $X_{k} \sim \operatorname{Geo}\left(\frac{n-(k-1)}{n}\right)$, and we know that $\mathbb{E}\left[X_{k}\right]=\frac{n}{n-k+1}$.

$$
\begin{aligned}
\mathbb{E}[T] & =\sum_{k=1}^{n} \frac{n}{n-k+1}=n\left[\frac{1}{n}+\frac{1}{n-1}+\ldots+\frac{1}{1}\right] \\
& \leq n\left[1+\int_{1}^{n} \frac{d x}{x}\right]=n[1+\ln (n)]
\end{aligned}
$$

We also know that $\mathbb{E}[T] \geq n \ln (n+1)$. Hence, $\mathbb{E}[T]=O(n \ln (n))$, meaning that we need to buy $O(n \ln (n))$ coffees to collect coupons of n colors and get a free coffee.

Questions?

Max Cut

Given a graph $G=(\mathcal{V}, \mathcal{E})$, partition the graph's vertices into two complementary sets \mathcal{S} and \mathcal{T}, such that the number of edges between the set \mathcal{S} and the set \mathcal{T} is as large as possible.

Max Cut has applications to VLSI circuit design.

Equivalently, find a set $\mathcal{U} \subseteq \mathcal{V}$ of vertices that solve the following

$$
\max _{\mathcal{U} \subseteq \mathcal{V}}|\delta(\mathcal{U})| \text { where } \delta(\mathcal{U}):=\{(u, v) \in \mathcal{E} \mid u \in \mathcal{U} \text { and } v \notin \mathcal{U}\}
$$

Here, $\delta(\mathcal{U})$ is referred to as the "cut" corresponding to the set \mathcal{U}.

Max Cut

- Max Cut is NP-hard (Karp, 1972), meaning that there is no polynomial (in $|\mathcal{E}|$) time algorithm that solves Max Cut exactly.
- We want to find an approximate solution \mathcal{U} such that, if OPT is the size of the optimal cut, then, $|\delta(\mathcal{U})| \geq \alpha$ OPT where $\alpha \in(0,1)$ is the multiplicative approximation factor.
- Randomized algorithm that guarantees an approximate solution with $\alpha=\frac{1}{2}$ with probability close to 1 (Erdos, 1967).
- Algorithm with $\alpha=0.878$. (Goemans and Williamson, 1995).
- Under some technical conditions, no efficient algorithm has $\alpha>0.878$ (Khot et al, 2004).

We will use Erdos' randomized algorithm and first prove the result in expectation. We wish to prove that for \mathcal{U} returned by Erdos' algorithm,

$$
\mathbb{E}[|\delta(\mathcal{U})|] \geq \frac{1}{2} O P T
$$

Algorithm: Select \mathcal{U} to be a random subset of \mathcal{V} i.e. for each vertex v, choose v to be in the set \mathcal{U} independently with probability $\frac{1}{2}$ (do not even look at the edges!).

Max Cut

Claim: For Erdos' algorithm, $\mathbb{E}[|\delta(\mathcal{U})|] \geq \frac{1}{2} O P T$.
Proof: For each edge $(u, v) \in \mathcal{E}$, let $X_{u, v}$ be the indicator random variable equal to 1 iff the event $E_{u, v}=\{(u, v) \in \delta(\mathcal{U})\}$ happens.

$$
\mathbb{E}[|\delta(\mathcal{U})|]=\mathbb{E}\left[\sum_{(u, v) \in \mathcal{E}} X_{u, v}\right]=\sum_{(u, v) \in \mathcal{E}} \mathbb{E}\left[X_{u, v}\right]=\sum_{(u, v) \in \mathcal{E}} \operatorname{Pr}\left[E_{u, v}\right]
$$

(Linearity of expectation, and Expectation of indicator r.v's.)
$\operatorname{Pr}\left[E_{u, v}\right]=\operatorname{Pr}[(u, v) \in \delta(\mathcal{U})]=\operatorname{Pr}[(u \in \mathcal{U} \cap v \notin \mathcal{U}) \cup(u \notin \mathcal{U} \cap v \in \mathcal{U})]$
$=\operatorname{Pr}[(u \in \mathcal{U} \cap v \notin \mathcal{U})]+\operatorname{Pr}[(u \notin \mathcal{U} \cap v \in \mathcal{U})] \quad$ (Union rule for mutually exclusive events)
$\operatorname{Pr}\left[E_{u, v}\right]=\operatorname{Pr}[u \in \mathcal{U}] \operatorname{Pr}[v \notin \mathcal{U}]+\operatorname{Pr}[u \notin \mathcal{U}] \operatorname{Pr}[v \in \mathcal{U}]=\frac{1}{2} \frac{1}{2}+\frac{1}{2} \frac{1}{2}=\frac{1}{2}$.
(Independent events)

$$
\Longrightarrow \mathbb{E}[|\delta(\mathcal{U})|]=\sum_{(u, v) \in \mathcal{E}} \operatorname{Pr}\left[E_{u, v}\right]=\frac{|\mathcal{E}|}{2} \geq \frac{\mathrm{OPT}}{2}
$$

Questions?

Conditional Expectation

Similar to probabilities, expectations can be conditioned on some event.
For random variable R, the expected value of R conditioned on an event A is given by:

$$
\mathbb{E}[R \mid A]=\sum_{x \in \operatorname{Range}(R)} x \operatorname{Pr}[R=x \mid A]
$$

Q: If we throw a standard dice and define R to be the random variable equal to the number that comes up, what is the expected value of R given that the number is at most 4 ?

Let A be the event that the number is at most 4 .

$$
\begin{aligned}
& \operatorname{Pr}[R=1 \mid A]=\frac{\operatorname{Pr}[(R=1) \cap A]}{\operatorname{Pr}[A]}=\frac{\operatorname{Pr}[R=1]}{\operatorname{Pr}[A]}=\frac{1 / 6}{4 / 6}=1 / 4 . \\
& \operatorname{Pr}[R=2 \mid A]=\operatorname{Pr}[R=3 \mid A]=\operatorname{Pr}[R=4 \mid A]=\frac{1}{4} \text { and } \operatorname{Pr}[R=5 \mid A]=\operatorname{Pr}[R=6 \mid A]=0 . \\
& \qquad \mathbb{E}[R \mid A]=\sum_{x \in\{1,2,3,4\}} x \operatorname{Pr}[R=x \mid A]=\frac{1}{4}[1+2+3+4]=\frac{5}{2}
\end{aligned}
$$

Q: What is the expected value of R given that the number is at least 4? Ans:
$\mathbb{E}[R \mid A]=\sum_{x \in\{4,5,6\}} \times \operatorname{Pr}[R=x \mid A]=\frac{1}{3}[4+5+6]=5$.

Law of Total Expectation

If R is a random variable $\mathcal{S} \rightarrow V$ and events $A_{1}, A_{2}, \ldots A_{n}$ form a partition of the sample space i.e. for all $i, j, A_{i} \cap A_{j}=\emptyset$ and $A_{1} \cup A_{2} \cup \ldots \cup A_{n}=\mathcal{S}$, then,

$$
\mathbb{E}[R]=\sum_{i} \mathbb{E}\left[R \mid A_{i}\right] \operatorname{Pr}\left[A_{i}\right]
$$

Proof:

$$
\begin{aligned}
\mathbb{E}[R] & =\sum_{x \in \operatorname{Range}(R)} x \operatorname{Pr}[R=x]=\sum_{x \in \operatorname{Range}(R)} x \sum_{i} \operatorname{Pr}\left[R=x \mid A_{i}\right] \operatorname{Pr}\left[A_{i}\right] \\
& =\sum_{i} \operatorname{Pr}\left[A_{i}\right] \sum_{x \in \operatorname{Range}(R)} x \operatorname{Pr}\left[R=x \mid A_{i}\right] \\
\Longrightarrow \mathbb{E}[R] & =\sum_{i} \operatorname{Pr}\left[A_{i}\right] \mathbb{E}\left[R \mid A_{i}\right] .
\end{aligned}
$$

Conditional Expectation - Examples

Q: Suppose that 49.6% of the people in the world are male and the rest female. If the expected height of a randomly chosen male is 5 feet 11 inches, while the expected height of a randomly chosen female is 5 feet 5 inches, what is the expected height of a randomly chosen person?

Define H to be the random variable equal to the height (in feet) of a randomly chosen person.
Define M to be the event that the person is male and F the event that the person is female.
We wish to compute $\mathbb{E}[H]$ and we know that $\mathbb{E}[H \mid M]=5+\frac{11}{12}$ and $\mathbb{E}[H \mid F]=5+\frac{5}{12}$. $\operatorname{Pr}[M]=0.496$ and $\operatorname{Pr}[F]=1-0.496=0.504$.
Hence, $\mathbb{E}[H]=\mathbb{E}[H \mid M] \operatorname{Pr}[M]+\mathbb{E}[H \mid F] \operatorname{Pr}[F]=\frac{71}{12}(0.496)+\frac{65}{12}(0.504)$.

Questions?

