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Recap

Random variable: A random “variable” R on a probability space is a total function whose
domain is the sample space S. The codomain is denoted by V (usually a subset of the real
numbers), meaning that R : S → V .

Example: Suppose we toss three independent, unbiased coins. In this case,
S = {HHH,HHT ,HTH,HTT ,THH,THT ,TTH,TTT}. C is a random variable equal to the
number of heads that appear such that C : S → {0, 1, 2, 3}. C (HHT ) = 2.

An random variable partitions the sample space into several blocks. For r.v. R, for all
i ∈ Range(R), the event [R = i ] = {ω ∈ S|R(ω) = i}. For any r.v. R,∑

i∈Range(R) Pr[R = i ] = 1.

Example: For the above r.v. C , [C = 2] = {HHT ,HTH,THH} and Pr[C = 2] = 3
8 .∑

i∈Range(C) Pr[C = i ] = Pr[C = 0] + Pr[C = 1] + Pr[C = 2] + Pr[C = 3] = 1
8 + 3

8 + 3
8 + 1

8 = 1.
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Recap

Indicator Random Variable: An indicator random variable corresponding to an event E is
denoted as IE and is defined such that for ω ∈ E , IE [ω] = 1 and for ω /∈ E , IE [ω] = 0.

Example: When throwing two dice, if E is the event that both throws of the dice result in a
prime number, then IE ((2, 4)) = 0 and IE ((2, 3)) = 1.

Probability density function (PDF): Let R be a r.v. with codomain V . The probability density
function of R is the function PDFR : V → [0, 1], such that PDFR [x ] = Pr[R = x ] if
x ∈ Range(R) and equal to zero if x /∈ Range(R).

Cumulative distribution function (CDF): The cumulative distribution function of R is the
function CDFR : R → [0, 1], such that CDFR [x ] = Pr[R ≤ x ].

Importantly, neither PDFR nor CDFR involves the sample space of an experiment.

Example: If we flip three coins, and C counts the number of heads, then
PDFC [0] = Pr[C = 0] = 1

8 , and
CDFC [2.3] = Pr[C ≤ 2.3] = Pr[C = 0] + Pr[C = 1] + Pr[C = 2] = 7

8 .
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Recap

A distribution can be specified by its probability density function (PDF) (denoted by f ).

Bernoulli Distribution: fp(0) = 1 − p, fp(1) = p. Example: When tossing a coin such that
Pr[heads] = p, random variable R is equal to 1 if we get a heads (and equal to 0 otherwise). In
this case, R follows the Bernoulli distribution i.e. R ∼ Ber(p).

Uniform Distribution: If R : S → V , then for all v ∈ V , f (v) = 1/|V |. Example: When
throwing an n-sided die, random variable R is the number that comes up on the die.
V = {1, 2, . . . , n}. In this case, R follows the Uniform distribution i.e.
R ∼ Uniform({1, 2, . . . , n}).
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Binomial Distribution

Canonical Example: We toss n biased coins independently. The probability of getting a heads for
each coin is p. Let R be the random variable equal to the number of heads in the n coin tosses.
R follows the Binomial distribution.

PDFR for Binomial distribution: f : {0, 1, 2, . . . , n} → [0, 1]. For k ∈ {0, 1, . . . , n},
f (k) =

(
n
k

)
pk(1 − p)n−k .

Proof : Let Ek be the event we get k heads. Let Ai be the event we get a heads in toss i .

Ek = (A1 ∩ A2 . . .Ak ∩ Ac
k+1 ∩ Ac

k+2 ∩ . . . ∩ Ac
n) ∪ (Ac

1 ∩ A2 . . .Ak ∩ Ak+1 ∩ Ac
k+2 ∩ . . . ∩ Ac

n) ∪ . . .

Pr[Ek ] = Pr[(A1 ∩ A2 . . .Ak ∩ Ac
k+1 ∩ Ac

k+2 ∩ . . . ∩ Ac
n)] + Pr[Ac

1 ∩ A2 . . .Ak ∩ Ak+1 ∩ . . .∩] + . . .

= Pr[A1] Pr[A2] Pr[Ak ] Pr[A
c
k+1] Pr[A

c
k+2] . . .Pr[A

c
n] + . . . (Independence of tosses)

= pk(1 − p)n−k + pk(1 − p)n−k + . . .

=⇒ Pr[Ek ] =

(
n

k

)
pk(1 − p)n−k

(Number of terms = number of ways to choose the k tosses that result in heads =
(
n
k

)
)
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Binomial Distribution

For the Binomial distribution, PDFR(k) =
(
n
k

)
pk(1 − p)n−k .

Q: Prove that
∑

k∈Range(R) PDFR [k] = 1.
By the Binomial Theorem,

∑
k∈Range(R) PDFR [k] =

∑n
k=0

(
n
k

)
pk(1− p)n−k = (p+ 1− p)n = 1.

CDFR for Binomial distribution: F : R → [0, 1]:

F (x) = 0 (for x < 0)

=
k∑

i=0

(
n

i

)
pi (1 − p)n−i (for k ≤ x < k + 1)

= 1. (for x ≥ n) 5



Geometric Distribution

Canonical Example: We toss a biased coin independently multiple times. The probability of
getting a heads is p. Let R be the random variable equal to the number of tosses needed to get
the first heads. R follows the geometric distribution.

PDFR for Geometric distribution: f : {1, 2, . . .} → [0, 1]. For k ∈ {1, 2, . . . ,∞},
f (k) = (1 − p)k−1 p.

Proof : Let Ek be the event that we need k tosses to get the first heads. Let Ai be the event
that we get a heads in toss i .

Ek = Ac
1 ∩ Ac

2 ∩ . . . ∩ Ak

Pr[Ek ] = Pr[Ac
1 ∩ Ac

2 ∩ . . . ∩ Ak ] = Pr[Ac
1] Pr[A

c
2] . . .Pr[Ak ] (Independence of tosses)

=⇒ Pr[Ek ] = (1 − p)k−1p

Q: Prove that
∑

k∈Range(R) PDFR [k] = 1.

By the sum of geometric series,
∑

k∈Range(R) PDFR [k] =
∑∞

k=1(1 − p)k−1p = p
1−(1−p) = 1.
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Geometric Distribution

For the Geometric distribution, PDFR(k) = (1 − p)k−1p.

CDFR for Geometric distribution: F : R → [0, 1]:

F (x) = 0 (for x < 1)

=
k∑

i=1

(1 − p)i−1p (for k ≤ x < k + 1)
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Questions?
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Distributions - Examples

Q: It is known that disks produced by a certain company will be defective with probability 0.01
independently of each other. The company sells the disks in packages of 10 and offers a
money-back guarantee that at most 1 of the 10 disks is defective (the package can be returned if
there is more than 1 defective disk). What proportion of packages is returned? If someone buys
three packages, what is the probability that exactly one of them will be returned?

Let X be the random variable corresponding to the number of defective disks in a package. Let
E be the event that the package is returned. We wish to compute Pr[E ] = Pr[X > 1]. X follows
the Binomial distribution Bin(10, 0.01). Hence,

Pr[E ] = Pr[X > 1] = 1 − Pr[X ≤ 1] = 1 − Pr[X = 0]− Pr[X = 1]

= 1 −
(

10
0

)
(0.99)10 −

(
10
1

)
(0.99)9(0.01)1 ≈ 0.05
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Distributions - Examples

Q: It is known that disks produced by a certain company will be defective with probability 0.01
independently of each other. The company sells the disks in packages of 10 and offers a
money-back guarantee that at most 1 of the 10 disks is defective (the package can be returned if
there is more than 1 defective disk). If someone buys three packages, what is the probability that
exactly one of them will be returned?

Let F be the event that someone bought 3 packages and exactly one of them is returned.

Answer 1: Let Ei be the event that package i is returned. From the previous question, we know
that Pr[Ei ] = Pr[Package i has more than 1 defective disk] ≈ 0.05.

F = (E1 ∩ E c
2 ∩ E c

3 ) ∪ (E c
1 ∩ E c

2 ∩ E3) ∪ (E c
1 ∩ E2 ∩ E c

3 )

Pr[F ] = Pr[E1](1 − Pr[E2])(1 − Pr[E3]) + (1 − Pr[E1])(1 − Pr[E2]) Pr[E3] + . . .

Pr[F ] ≈ 3 × (0.05)(0.95)(0.95) ≈ 0.15.

Answer 2: Let Y be the random variable corresponding to the number of packages returned.
Y follows the Binomial distribution Bin(3, 0.05) and we wish to compute
Pr[F ] = Pr[Y = 1] ≈

(3
1

)
(0.05)1(0.95)2 ≈ 0.15. 9



Questions?
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Number Guessing Game

Q: We have two envelopes. Each contains a distinct number in {0, 1, 2, . . . , 100}. To win the
game, we must determine which envelope contains the larger number. We are allowed to peek at
the number in one envelope selected at random. Can we devise a winning strategy?

Strategy 1: We pick an envelope at random and guess that it contains the larger number
(without even peeking at the number).

Q: What is the probability that we win with this strategy? Ans: 0.5

Strategy 2: We peek at the number and if its below 50, we choose the other envelope.

But the numbers in the envelopes need not be random! The numbers are chosen “adversarially”
in a way that will defeat our guessing strategy. For example, to “beat” Strategy 2, the two
numbers can always be chosen to be below 50.

Q: Can we do better than 50% chance of winning?
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Number Guessing Game

Suppose that we somehow knew a number x that was in between the numbers in the envelopes.
If we peek in one envelope and see a number. If it is bigger than x , we know its the higher
number and choose that envelope. If it is smaller than x , we know that is the smaller number
and choose the other envelope.

Of course, we do not know such a number x . But we can guess it!

Strategy 3: Choose a random number x from {0.5, 1.5, 2.5, . . . n− 1/2} according to the uniform
distribution i.e. Pr[x = 0.5] = Pr[1.5] = . . . = 1/n. Then we peek at the number (denoted by T )
in one envelope, and if T > x , we choose that envelope, else we choose the other envelope.

The advantage of such a randomized strategy is that the adversary cannot easily “adapt” to it.

Q: But does it have better than 50% chance of winning?
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Number Guessing Game

Let the numbers in the two envelopes be L (lower number) and H (the higher number).

Pr[win] =
L

2n
+

H − L

2n
+

H − L

2n
+

n − H

2n

=
1
2
+

H − L

2n
≥ 1

2
+

1
2n

>
1
2

Hence our strategy has a greater than 50%
chance of winning! If n = 10, Pr[win] ≥ 0.55,
for n = 100, Pr[win] ≥ 0.505.

Q: For n = 100, if L = 23 and H = 54, compute
Pr[ guessing too low | we win ]

Ans: Pr[ guessing too low | we win ] =
Pr[ we win ∩ guessing too low ]

Pr[ we win ] =
L/2n

1/2+(H−L)/2n
=

L
n+H−L = 23

131 .
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Questions?
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