CMPT 210: Probability and Computing

Lecture 13

Sharan Vaswani
February 16, 2023

Recap

Random variable: A random "variable" R on a probability space is a total function whose domain is the sample space \mathcal{S}. The codomain is denoted by V (usually a subset of the real numbers), meaning that $R: \mathcal{S} \rightarrow V$.
Example: Suppose we toss three independent, unbiased coins. In this case, $\mathcal{S}=\{H H H, H H T, H T H, H T T, T H H, T H T, T T H, T T T\} . C$ is a random variable equal to the number of heads that appear such that $C: \mathcal{S} \rightarrow\{0,1,2,3\} . C(H H T)=2$.

An random variable partitions the sample space into several blocks. For r.v. R, for all $i \in \operatorname{Range}(R)$, the event $[R=i]=\{\omega \in \mathcal{S} \mid R(\omega)=i\}$. For any r.v. R, $\sum_{i \in \operatorname{Range}(\mathrm{R})} \operatorname{Pr}[R=i]=1$.
Example: For the above r.v. $C,[C=2]=\{H H T, H T H, T H H\}$ and $\operatorname{Pr}[C=2]=\frac{3}{8}$. $\sum_{i \in \operatorname{Range}(C)} \operatorname{Pr}[C=i]=\operatorname{Pr}[C=0]+\operatorname{Pr}[C=1]+\operatorname{Pr}[C=2]+\operatorname{Pr}[C=3]=\frac{1}{8}+\frac{3}{8}+\frac{3}{8}+\frac{1}{8}=1$.

Recap

Indicator Random Variable: An indicator random variable corresponding to an event E is denoted as \mathcal{I}_{E} and is defined such that for $\omega \in E, \mathcal{I}_{E}[\omega]=1$ and for $\omega \notin E, \mathcal{I}_{E}[\omega]=0$.
Example: When throwing two dice, if E is the event that both throws of the dice result in a prime number, then $\mathcal{I}_{E}((2,4))=0$ and $\mathcal{I}_{E}((2,3))=1$.
Probability density function (PDF): Let R be a r.v. with codomain V. The probability density function of R is the function $\mathrm{PDF}_{R}: V \rightarrow[0,1]$, such that $\operatorname{PDF}_{R}[x]=\operatorname{Pr}[R=x]$ if $x \in \operatorname{Range}(\mathrm{R})$ and equal to zero if $x \notin \operatorname{Range}(\mathrm{R})$.
Cumulative distribution function (CDF): The cumulative distribution function of R is the function $\mathrm{CDF}_{R}: \mathbb{R} \rightarrow[0,1]$, such that $\mathrm{CDF}_{R}[x]=\operatorname{Pr}[R \leq x]$.
Importantly, neither PDF_{R} nor CDF_{R} involves the sample space of an experiment.
Example: If we flip three coins, and C counts the number of heads, then
$\operatorname{PDF}_{C}[0]=\operatorname{Pr}[C=0]=\frac{1}{8}$, and
$\mathrm{CDF}_{C}[2.3]=\operatorname{Pr}[C \leq 2.3]=\operatorname{Pr}[C=0]+\operatorname{Pr}[C=1]+\operatorname{Pr}[C=2]=\frac{7}{8}$.

Recap

A distribution can be specified by its probability density function (PDF) (denoted by f).
Bernoulli Distribution: $f_{p}(0)=1-p, f_{p}(1)=p$. Example: When tossing a coin such that $\operatorname{Pr}[$ heads $]=p$, random variable R is equal to 1 if we get a heads (and equal to 0 otherwise). In this case, R follows the Bernoulli distribution i.e. $R \sim \operatorname{Ber}(p)$.

Uniform Distribution: If $R: \mathcal{S} \rightarrow V$, then for all $v \in V, f(v)=1 /|V|$. Example: When throwing an n-sided die, random variable R is the number that comes up on the die. $V=\{1,2, \ldots, n\}$. In this case, R follows the Uniform distribution i.e. $R \sim \operatorname{Uniform}(\{1,2, \ldots, n\})$.

Binomial Distribution

Canonical Example: We toss n biased coins independently. The probability of getting a heads for each coin is p. Let R be the random variable equal to the number of heads in the n coin tosses. R follows the Binomial distribution.
PDF_{R} for Binomial distribution: $f:\{0,1,2, \ldots, n\} \rightarrow[0,1]$. For $k \in\{0,1, \ldots, n\}$, $f(k)=\binom{n}{k} p^{k}(1-p)^{n-k}$.
Proof: Let E_{k} be the event we get k heads. Let A_{i} be the event we get a heads in toss i.

$$
\begin{aligned}
E_{k}= & \left(A_{1} \cap A_{2} \ldots A_{k} \cap A_{k+1}^{c} \cap A_{k+2}^{c} \cap \ldots \cap A_{n}^{c}\right) \cup\left(A_{1}^{c} \cap A_{2} \ldots A_{k} \cap A_{k+1} \cap A_{k+2}^{c} \cap \ldots \cap A_{n}^{c}\right) \cup \ldots \\
\operatorname{Pr}\left[E_{k}\right] & =\operatorname{Pr}\left[\left(A_{1} \cap A_{2} \ldots A_{k} \cap A_{k+1}^{c} \cap A_{k+2}^{c} \cap \ldots \cap A_{n}^{c}\right)\right]+\operatorname{Pr}\left[A_{1}^{c} \cap A_{2} \ldots A_{k} \cap A_{k+1} \cap \ldots \cap\right]+\ldots \\
& =\operatorname{Pr}\left[A_{1}\right] \operatorname{Pr}\left[A_{2}\right] \operatorname{Pr}\left[A_{k}\right] \operatorname{Pr}\left[A_{k+1}^{c}\right] \operatorname{Pr}\left[A_{k+2}^{c}\right] \ldots \operatorname{Pr}\left[A_{n}^{c}\right]+\ldots \quad \text { (Independence of tosses) } \\
& =p^{k}(1-p)^{n-k}+p^{k}(1-p)^{n-k}+\ldots \\
\Longrightarrow & \operatorname{Pr}\left[E_{k}\right]=\binom{n}{k} p^{k}(1-p)^{n-k}
\end{aligned}
$$

$\left(\right.$ Number of terms $=$ number of ways to choose the k tosses that result in heads $\left.=\binom{n}{k}\right)$

Binomial Distribution

For the Binomial distribution, $\operatorname{PDF}_{R}(k)=\binom{n}{k} p^{k}(1-p)^{n-k}$.

Q: Prove that $\sum_{k \in \operatorname{Range}(\mathrm{R})} \mathrm{PDF}_{R}[k]=1$.
By the Binomial Theorem, $\sum_{k \in \operatorname{Range}(R)} \operatorname{PDF}_{R}[k]=\sum_{k=0}^{n}\binom{n}{k} p^{k}(1-p)^{n-k}=(p+1-p)^{n}=1$.
CDF_{R} for Binomial distribution: $F: \mathbb{R} \rightarrow[0,1]:$

$$
\begin{aligned}
F(x) & =0 \\
& =\sum_{i=0}^{k}\binom{n}{i} p^{i}(1-p)^{n-i} \\
& =1 .
\end{aligned}
$$

$$
(\text { for } x<0)
$$

$$
(\text { for } k \leq x<k+1)
$$

$$
\text { (for } x \geq n \text {) }
$$

Geometric Distribution

Canonical Example: We toss a biased coin independently multiple times. The probability of getting a heads is p. Let R be the random variable equal to the number of tosses needed to get the first heads. R follows the geometric distribution.
PDF_{R} for Geometric distribution: $f:\{1,2, \ldots\} \rightarrow[0,1]$. For $k \in\{1,2, \ldots, \infty\}$, $f(k)=(1-p)^{k-1} p$.
Proof: Let E_{k} be the event that we need k tosses to get the first heads. Let A_{i} be the event that we get a heads in toss i.

$$
\begin{aligned}
E_{k} & =A_{1}^{c} \cap A_{2}^{c} \cap \ldots \cap A_{k} \\
\operatorname{Pr}\left[E_{k}\right] & =\operatorname{Pr}\left[A_{1}^{c} \cap A_{2}^{c} \cap \ldots \cap A_{k}\right]=\operatorname{Pr}\left[A_{1}^{c}\right] \operatorname{Pr}\left[A_{2}^{c}\right] \ldots \operatorname{Pr}\left[A_{k}\right] \quad \text { (Independence of tosses) } \\
\Longrightarrow \operatorname{Pr}\left[E_{k}\right] & =(1-p)^{k-1} p
\end{aligned}
$$

Q: Prove that $\sum_{k \in \operatorname{Range(R)}} \operatorname{PDF}_{R}[k]=1$.
By the sum of geometric series, $\sum_{k \in \operatorname{Range}(R)} \mathrm{PDF}_{R}[k]=\sum_{k=1}^{\infty}(1-p)^{k-1} p=\frac{p}{1-(1-p)}=1$.

Geometric Distribution

For the Geometric distribution, $\operatorname{PDF}_{R}(k)=(1-p)^{k-1} p$.

CDF_{R} for Geometric distribution: $F: \mathbb{R} \rightarrow[0,1]:$

$$
\begin{array}{rlr}
F(x) & =0 & (\text { for } x<1) \\
& =\sum_{i=1}^{k}(1-p)^{i-1} p & (\text { for } k \leq x<k+1)
\end{array}
$$

Questions?

Distributions - Examples

Q: It is known that disks produced by a certain company will be defective with probability 0.01 independently of each other. The company sells the disks in packages of 10 and offers a money-back guarantee that at most 1 of the 10 disks is defective (the package can be returned if there is more than 1 defective disk). What proportion of packages is returned? If someone buys three packages, what is the probability that exactly one of them will be returned?

Let X be the random variable corresponding to the number of defective disks in a package. Let E be the event that the package is returned. We wish to compute $\operatorname{Pr}[E]=\operatorname{Pr}[X>1] . X$ follows the Binomial distribution $\operatorname{Bin}(10,0.01)$. Hence,

$$
\begin{aligned}
\operatorname{Pr}[E]=\operatorname{Pr}[X>1] & =1-\operatorname{Pr}[X \leq 1]=1-\operatorname{Pr}[X=0]-\operatorname{Pr}[X=1] \\
& =1-\binom{10}{0}(0.99)^{10}-\binom{10}{1}(0.99)^{9}(0.01)^{1} \approx 0.05
\end{aligned}
$$

Distributions - Examples

Q: It is known that disks produced by a certain company will be defective with probability 0.01 independently of each other. The company sells the disks in packages of 10 and offers a money-back guarantee that at most 1 of the 10 disks is defective (the package can be returned if there is more than 1 defective disk). If someone buys three packages, what is the probability that exactly one of them will be returned?

Let F be the event that someone bought 3 packages and exactly one of them is returned.
Answer 1: Let E_{i} be the event that package i is returned. From the previous question, we know that $\operatorname{Pr}\left[E_{i}\right]=\operatorname{Pr}[$ Package i has more than 1 defective disk $] \approx 0.05$.

$$
\begin{aligned}
& F=\left(E_{1} \cap E_{2}^{c} \cap E_{3}^{c}\right) \cup\left(E_{1}^{c} \cap E_{2}^{c} \cap E_{3}\right) \cup\left(E_{1}^{c} \cap E_{2} \cap E_{3}^{c}\right) \\
& \operatorname{Pr}[F]=\operatorname{Pr}\left[E_{1}\right]\left(1-\operatorname{Pr}\left[E_{2}\right]\right)\left(1-\operatorname{Pr}\left[E_{3}\right]\right)+\left(1-\operatorname{Pr}\left[E_{1}\right]\right)\left(1-\operatorname{Pr}\left[E_{2}\right]\right) \operatorname{Pr}\left[E_{3}\right]+\ldots \\
& \operatorname{Pr}[F] \approx 3 \times(0.05)(0.95)(0.95) \approx 0.15
\end{aligned}
$$

Answer 2: Let Y be the random variable corresponding to the number of packages returned. Y follows the Binomial distribution $\operatorname{Bin}(3,0.05)$ and we wish to compute $\operatorname{Pr}[F]=\operatorname{Pr}[Y=1] \approx\binom{3}{1}(0.05)^{1}(0.95)^{2} \approx 0.15$.

Questions?

Number Guessing Game

Q: We have two envelopes. Each contains a distinct number in $\{0,1,2, \ldots, 100\}$. To win the game, we must determine which envelope contains the larger number. We are allowed to peek at the number in one envelope selected at random. Can we devise a winning strategy?

Strategy 1: We pick an envelope at random and guess that it contains the larger number (without even peeking at the number).

Q: What is the probability that we win with this strategy? Ans: 0.5
Strategy 2: We peek at the number and if its below 50 , we choose the other envelope.
But the numbers in the envelopes need not be random! The numbers are chosen "adversarially" in a way that will defeat our guessing strategy. For example, to "beat" Strategy 2, the two numbers can always be chosen to be below 50 .

Q: Can we do better than 50% chance of winning?

Number Guessing Game

Suppose that we somehow knew a number x that was in between the numbers in the envelopes. If we peek in one envelope and see a number. If it is bigger than x, we know its the higher number and choose that envelope. If it is smaller than x, we know that is the smaller number and choose the other envelope.
Of course, we do not know such a number x. But we can guess it!
Strategy 3: Choose a random number x from $\{0.5,1.5,2.5, \ldots n-1 / 2\}$ according to the uniform distribution i.e. $\operatorname{Pr}[x=0.5]=\operatorname{Pr}[1.5]=\ldots=1 / n$. Then we peek at the number (denoted by T) in one envelope, and if $T>x$, we choose that envelope, else we choose the other envelope.

The advantage of such a randomized strategy is that the adversary cannot easily "adapt" to it. Q: But does it have better than 50% chance of winning?

Number Guessing Game

Let the numbers in the two envelopes be L (lower number) and H (the higher number).

$$
\begin{aligned}
\operatorname{Pr}[\text { win }] & =\frac{L}{2 n}+\frac{H-L}{2 n}+\frac{H-L}{2 n}+\frac{n-H}{2 n} \\
& =\frac{1}{2}+\frac{H-L}{2 n} \geq \frac{1}{2}+\frac{1}{2 n}>\frac{1}{2}
\end{aligned}
$$

Hence our strategy has a greater than 50% chance of winning! If $n=10, \operatorname{Pr}[\mathrm{win}] \geq 0.55$, for $n=100, \operatorname{Pr}[\mathrm{win}] \geq 0.505$.
Q: For $n=100$, if $L=23$ and $H=54$, compute $\operatorname{Pr}[$ guessing too low \mid we win]
Ans: $\operatorname{Pr}[$ guessing too low \mid we win $]=$ $\frac{\operatorname{Pr}[\text { we win } \cap \text { guessing too low }]}{\operatorname{Pr}[\text { we win }]}=\frac{L / 2 n}{1 / 2+(H-L) / 2 n}=$ $\frac{L}{n+H-L}=\frac{23}{131}$.

Questions?

