# CMPT 210: Probability and Computing 

Lecture 12

Sharan Vaswani
February 10, 2023

## Recap

Random variable: A random "variable" $R$ on a probability space is a total function whose domain is the sample space $\mathcal{S}$. The codomain is denoted by $V$ (usually a subset of the real numbers), meaning that $R: \mathcal{S} \rightarrow V$.

Example: Suppose we toss three independent, unbiased coins. In this case, $\mathcal{S}=\{H H H, H H T, H T H, H T T, T H H, T H T, T T H, T T T\} . C$ is a random variable equal to the number of heads that appear such that $C: \mathcal{S} \rightarrow\{0,1,2,3\}$. $C(H H T)=2$.
Indicator Random Variable: An indicator random variable corresponding to an event $E$ is denoted as $\mathcal{I}_{E}$ and is defined such that for $\omega \in E, \mathcal{I}_{E}[\omega]=1$ and for $\omega \notin E, \mathcal{I}_{E}[\omega]=0$.

Example: When throwing two dice, if $E$ is the event that both throws of the dice result in a prime number, then $\mathcal{I}_{E}((2,4))=0$ and $\mathcal{I}_{E}((2,3))=1$.

An indicator random variable partitions the sample space into those outcomes mapped to 1 and those outcomes mapped to 0 .

## Random Variables and Events

In general, a random variable that takes on several values partitions $\mathcal{S}$ into several blocks.
Example: When we toss a coin three times, and define $C$ to be the r.v. that counts the number of heads, $C$ partitions $\mathcal{S}$ as follows: $\mathcal{S}=\{\underbrace{H H H}_{C=3}, \underbrace{H H T, H T H, T H H}_{C=2}, \underbrace{H T T, T H T, T T H}_{C=1}, \underbrace{T T T}_{C=0}\}$.
Each block is a subset of the sample space and is therefore an event. For example, [ $C=2$ ] is the event that the number of heads is two and consists of the outcomes $\{H H T, H T H, T H H\}$.

Since it is an event, we can compute its probability i.e.
$\operatorname{Pr}[C=2]=\operatorname{Pr}[\{H H T, H T H, T H H\}]=\operatorname{Pr}[\{H H T\}]+\operatorname{Pr}[\{H T H\}]+\operatorname{Pr}[\{T H H\}]$. Since this is a uniform probability space, $\operatorname{Pr}[\omega]=\frac{1}{8}$ for $\omega \in \mathcal{S}$ and hence $\operatorname{Pr}[C=2]=\frac{3}{8}$.
Q: What is $\operatorname{Pr}[C=0], \operatorname{Pr}[C=1]$ and $\operatorname{Pr}[C=3]$ ? Ans: $\frac{1}{8}, \frac{3}{8}, \frac{1}{8}$
Q: What is $\sum_{i=0}^{3} \operatorname{Pr}[C=i]$ ? Ans: 1
Since a random variable $R$ is a total function that maps every outcome in $\mathcal{S}$ to some value in the codomain, $\sum_{i \in \text { Range of } R} \operatorname{Pr}[R=i]=\sum_{i \in \text { Range of } R} \sum_{\omega \text { s.t. }} R(\omega)=i \operatorname{Pr}[\omega]=\sum_{\omega \in \mathcal{S}} \operatorname{Pr}[\omega]=1$.

## Back to throwing dice

Q: Suppose we throw two standard dice one after the other. Let us define $R$ to be the random variable equal to the sum of the dice. What are the outcomes in the event $[R=2]$ ? Ans: $\{(1,1)\}$

Q: What is $\operatorname{Pr}[R=4], \operatorname{Pr}[R=9]$ ? Ans: $\frac{3}{36}, \frac{4}{36}$
Q: If $M$ is the indicator random variable equal to 1 iff both throws of the dice produces a prime number, what is $\operatorname{Pr}[M=1]$ ? Ans: $\frac{9}{36}$

## Distribution Functions

Probability density function (PDF): Let $R$ be a random variable with codomain $V$. The probability density function of $R$ is the function $\mathrm{PDF}_{R}: V \rightarrow[0,1]$, such that
$\operatorname{PDF}_{R}[x]=\operatorname{Pr}[R=x]$ if $x \in \operatorname{Range}(\mathrm{R})$ and equal to zero if $x \notin \operatorname{Range}(\mathrm{R})$.
$\sum_{x \in V} \operatorname{PDF}_{R}[x]=\sum_{x \in \operatorname{Range}(R)} \operatorname{Pr}[R=x]=1$.
Cumulative distribution function (CDF): If the codomain is a subset of the real numbers, then the cumulative distribution function is the function $\mathrm{CDF}_{R}: \mathbb{R} \rightarrow[0,1]$, such that $\mathrm{CDF}_{R}[x]=\operatorname{Pr}[R \leq x]$.
Importantly, neither $\mathrm{PDF}_{R}$ nor $\mathrm{CDF}_{R}$ involves the sample space of an experiment.
Example: If we flip three coins, and $C$ counts the number of heads, then
$\operatorname{PDF}_{c}[0]=\operatorname{Pr}[C=0]=\frac{1}{8}$, and
$\mathrm{CDF}_{C}[2.3]=\operatorname{Pr}[C \leq 2.3]=\operatorname{Pr}[C=0]+\operatorname{Pr}[C=1]+\operatorname{Pr}[C=2]=\frac{7}{8}$.
Q: What is CDF $_{C}[5.8]$ ? Ans: 1 .
For a general random variable $R$, as $x \rightarrow \infty, \operatorname{CDF}_{R}[x] \rightarrow 1$ and $x \rightarrow-\infty, \mathrm{CDF}_{R}[x] \rightarrow 0$.

## Back to throwing dice

Q: Suppose we throw two standard dice one after the other. Let us define $T$ to be the random variable equal to the sum of the dice. Plot $\mathrm{PDF}_{T}$ and $\mathrm{CDF}_{T}$

Recall that $T:\{1,2,3,4,5,6\} \times\{1,2,3,4,5,6\} \rightarrow V$ where $V=\{2,3,4, \ldots 12\}$.
$\mathrm{PDF}_{T}: V \rightarrow[0,1]$ and $\mathrm{CDF}_{T}: \mathbb{R} \rightarrow[0,1]$.
For example, $\operatorname{PDF}_{T}[4]=\operatorname{Pr}[T=4]=\frac{3}{36}$ and $\operatorname{PDF}_{T}[12]=\operatorname{Pr}[T=12]=\frac{1}{36}$.



## Questions?

## Distributions

Many random variables turn out to have the same PDF and CDF. In other words, even though $R$ and $T$ might be different random variables on different probability spaces, it is often the case that $\mathrm{PDF}_{R}=\mathrm{PDF}_{T}$. Hence, by studying the properties of such PDFs, we can study different random variables and experiments.

Distribution over a random variable can be fully specified using the cumulative distribution function (CDF) (usually denoted by $F$ ). The corresponding probability density function (PDF) is denoted by $f$.

Common Discrete Distributions in Computer Science:

- Bernoulli Distribution
- Uniform Distribution
- Binomial Distribution
- Geometric Distribution


## Bernoulli Distribution

Canonical Example: We toss a biased coin such that the probability of getting a heads is $p$. Let $R$ be the random variable such that $R=1$ when the coin comes up heads and $R=0$ if the coin comes up tails. $R$ follows the Bernoulli distribution.
$\operatorname{PDF}_{R}$ for Bernoulli distribution: $f:\{0,1\} \rightarrow[0,1]$ meaning that Bernoulli random variables take values in $\{0,1\}$. It can be fully specified by the "probability of success" (of an experiment) $p$ (probability of getting a heads in the example). Formally, $\mathrm{PDF}_{R}$ is given by:

$$
f(1)=p \quad ; \quad f(0)=q:=1-p
$$

In the example, $\operatorname{Pr}[R=1]=f(1)=p=\operatorname{Pr}[$ event that we get a heads $]$.
$\mathrm{CDF}_{R}$ for Bernoulli distribution: $F: \mathbb{R} \rightarrow[0,1]$ :

$$
\begin{aligned}
F(x) & =0 & (\text { for } x<0) \\
& =1-p & (\text { for } 0 \leq x<1) \\
& =1 & (\text { for } x \geq 1)
\end{aligned}
$$

## Uniform Distribution

Canonical Example: We roll a standard die. Let $R$ be the random variable equal to the number that shows up on the die. $R$ follows the uniform distribution.

A random variable $R$ that takes on each possible value in its codomain $V$ with the same probability is said to be uniform.
$\mathrm{PDF}_{R}$ for Uniform distribution: $f: V \rightarrow[0,1]$ such that for all $v \in V, f(v)=1 /|V|$. In the example, $f(1)=f(2)=\ldots=f(6)=\frac{1}{6}$.
$\mathrm{CDF}_{R}$ for Uniform distribution: For $n$ elements in $V$ arranged in increasing order $\left(v_{1}, v_{2}, \ldots, v_{n}\right)$, the CDF is:

$$
\begin{aligned}
F(x) & =0 \\
& =k / n \\
& =1
\end{aligned}
$$

$$
\begin{array}{r}
\left(\text { for } x<v_{1}\right) \\
\left(\text { for } v_{k} \leq x<v_{k+1}\right) \\
\left(\text { for } x \geq v_{n}\right)
\end{array}
$$

Q: If $X$ has a Bernoulli distribution, when is $X$ also uniform? Ans: When $p=1 / 2$

## Binomial Distribution

Canonical Example: We toss $n$ biased coins independently. The probability of getting a heads for each coin is $p$. Let $R$ be the random variable equal to the number of heads in the $n$ coin tosses. $R$ follows the Binomial distribution.
$\mathrm{PDF}_{R}$ for Binomial distribution: $f:\{0,1,2, \ldots, n\} \rightarrow[0,1]$. For $k \in\{0,1, \ldots, n\}$, $f(k)=\binom{n}{k} p^{k}(1-p)^{n-k}$.
Proof: Let $E_{k}$ be the event we get $k$ heads. Let $A_{i}$ be the event we get a heads in toss $i$.

$$
\begin{aligned}
E_{k}= & \left(A_{1} \cap A_{2} \ldots A_{k} \cap A_{k+1}^{c} \cap A_{k+2}^{c} \cap \ldots \cap A_{n}^{c}\right) \cup\left(A_{1}^{c} \cap A_{2} \ldots A_{k} \cap A_{k+1} \cap A_{k+2}^{c} \cap \ldots \cap A_{n}^{c}\right) \cup \ldots \\
\operatorname{Pr}\left[E_{k}\right] & =\operatorname{Pr}\left[\left(A_{1} \cap A_{2} \ldots A_{k} \cap A_{k+1}^{c} \cap A_{k+2}^{c} \cap \ldots \cap A_{n}^{c}\right)\right]+\operatorname{Pr}\left[A_{1}^{c} \cap A_{2} \ldots A_{k} \cap A_{k+1} \cap \ldots \cap\right]+\ldots \\
& =\operatorname{Pr}\left[A_{1}\right] \operatorname{Pr}\left[A_{2}\right] \operatorname{Pr}\left[A_{k}\right] \operatorname{Pr}\left[A_{k+1}^{c}\right] \operatorname{Pr}\left[A_{k+2}^{c}\right] \ldots \operatorname{Pr}\left[A_{n}^{c}\right]+\ldots \quad \text { (Independence of tosses) } \\
& =p^{k}(1-p)^{n-k}+p^{k}(1-p)^{n-k}+\ldots \\
\Longrightarrow & \operatorname{Pr}\left[E_{k}\right]=\binom{n}{k} p^{k}(1-p)^{n-k}
\end{aligned}
$$

$\left(\right.$ Number of terms $=$ number of ways to choose the $k$ tosses that result in heads $\left.=\binom{n}{k}\right)$

## Binomial Distribution

For the Binomial distribution, $\operatorname{PDF}_{R}(k)=\binom{n}{k} p^{k}(1-p)^{n-k}$.


Q: Prove that $\sum_{k \in \operatorname{Range}(\mathrm{R})} \mathrm{PDF}_{R}[k]=1$.
By the Binomial Theorem, $\sum_{k \in \operatorname{Range}(\mathrm{R})} \mathrm{PDF}_{R}[k]=\sum_{k=0}^{n}\binom{n}{k} p^{k}(1-p)^{n-k}=(p+1-p)^{n}=1$.
$\mathrm{CDF}_{R}$ for Binomial distribution: $F: \mathbb{R} \rightarrow[0,1]:$

$$
\begin{aligned}
F(x) & =0 \\
& =\sum_{i=0}^{k}\binom{n}{i} p^{i}(1-p)^{n-i} \\
& =1 .
\end{aligned}
$$

$$
(\text { for } x<0)
$$

$$
(\text { for } k \leq x<k+1)
$$

$$
\text { (for } x \geq n \text { ) }
$$

## Geometric Distribution

Canonical Example: We toss a biased coin independently multiple times. The probability of getting a heads is $p$. Let $R$ be the random variable equal to the number of tosses needed to get the first heads. $R$ follows the geometric distribution.
$\mathrm{PDF}_{R}$ for Geometric distribution: $f:\{1,2, \ldots\} \rightarrow[0,1]$. For $k \in\{1,2, \ldots, \infty\}$, $f(k)=(1-p)^{k-1} p$.
Proof: Let $E_{k}$ be the event that we need $k$ tosses to get the first heads. Let $A_{i}$ be the event that we get a heads in toss $i$.

$$
\begin{aligned}
E_{k} & =A_{1}^{c} \cap A_{2}^{c} \cap \ldots \cap A_{k} \\
\operatorname{Pr}\left[E_{k}\right] & =\operatorname{Pr}\left[A_{1}^{c} \cap A_{2}^{c} \cap \ldots \cap A_{k}\right]=\operatorname{Pr}\left[A_{1}^{c}\right] \operatorname{Pr}\left[A_{2}^{c}\right] \ldots \operatorname{Pr}\left[A_{k}\right] \quad \text { (Independence of tosses) } \\
\Longrightarrow \operatorname{Pr}\left[E_{k}\right] & =(1-p)^{k-1} p
\end{aligned}
$$

Q: Prove that $\sum_{k \in \operatorname{Range(R)}} \operatorname{PDF}_{R}[k]=1$.
By the sum of geometric series, $\sum_{k \in \operatorname{Range}(R)} \mathrm{PDF}_{R}[k]=\sum_{k=1}^{\infty}(1-p)^{k-1} p=\frac{p}{1-(1-p)}=1$.

## Geometric Distribution

For the Geometric distribution, $\operatorname{PDF}_{R}(k)=(1-p)^{k-1} p$.

$\mathrm{CDF}_{R}$ for Geometric distribution: $F: \mathbb{R} \rightarrow[0,1]:$

$$
\begin{array}{rlr}
F(x) & =0 & (\text { for } x<1) \\
& =\sum_{i=1}^{k}(1-p)^{i-1} p & (\text { for } k \leq x<k+1)
\end{array}
$$

## Questions?

