CMPT 210: Probability and Computing

Lecture 12

Sharan Vaswani February 10, 2023 **Random variable**: A random "variable" R on a probability space is a total function whose domain is the sample space S. The codomain is denoted by V (usually a subset of the real numbers), meaning that $R: S \to V$.

Example: Suppose we toss three independent, unbiased coins. In this case, $S = \{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT\}$. *C* is a random variable equal to the number of heads that appear such that $C : S \rightarrow \{0, 1, 2, 3\}$. C(HHT) = 2.

Indicator Random Variable: An indicator random variable corresponding to an event E is denoted as \mathcal{I}_E and is defined such that for $\omega \in E$, $\mathcal{I}_E[\omega] = 1$ and for $\omega \notin E$, $\mathcal{I}_E[\omega] = 0$.

Example: When throwing two dice, if *E* is the event that both throws of the dice result in a prime number, then $\mathcal{I}_E((2,4)) = 0$ and $\mathcal{I}_E((2,3)) = 1$.

An indicator random variable partitions the sample space into those outcomes mapped to 1 and those outcomes mapped to 0.

Random Variables and Events

In general, a random variable that takes on several values partitions S into several blocks. *Example*: When we toss a coin three times, and define C to be the r.v. that counts the number of heads, C partitions S as follows: $S = \{\underbrace{HHH}_{C=3}, \underbrace{HHT}_{C=2}, \underbrace{HTT}_{C=2}, \underbrace{HTT}_{C=1}, \underbrace{TTT}_{C=0}\}$.

Each block is a subset of the sample space and is therefore an event. For example, [C = 2] is the event that the number of heads is two and consists of the outcomes {HHT, HTH, THH}.

Since it is an event, we can compute its probability i.e.

 $\Pr[C = 2] = \Pr[\{HHT, HTH, THH\}] = \Pr[\{HHT\}] + \Pr[\{HTH\}] + \Pr[\{THH\}].$ Since this is a uniform probability space, $\Pr[\omega] = \frac{1}{8}$ for $\omega \in S$ and hence $\Pr[C = 2] = \frac{3}{8}$.

- Q: What is $\Pr[C = 0]$, $\Pr[C = 1]$ and $\Pr[C = 3]$? Ans: $\frac{1}{8}$, $\frac{3}{8}$, $\frac{1}{8}$
- Q: What is $\sum_{i=0}^{3} \Pr[C=i]$? Ans: 1

Since a random variable R is a total function that maps every outcome in S to some value in the codomain, $\sum_{i \in \text{Range of } R} \Pr[R = i] = \sum_{i \in \text{Range of } R} \sum_{\omega \text{ s.t. } R(\omega)=i} \Pr[\omega] = \sum_{\omega \in S} \Pr[\omega] = 1.$

Q: Suppose we throw two standard dice one after the other. Let us define R to be the random variable equal to the sum of the dice. What are the outcomes in the event [R = 2]? Ans: $\{(1,1)\}$

Q: What is $\Pr[R = 4]$, $\Pr[R = 9]$? Ans: $\frac{3}{36}$, $\frac{4}{36}$

Q: If M is the indicator random variable equal to 1 iff both throws of the dice produces a prime number, what is Pr[M = 1]? Ans: $\frac{9}{36}$

Distribution Functions

Probability density function (PDF): Let R be a random variable with codomain V. The probability density function of R is the function $PDF_R : V \to [0, 1]$, such that $PDF_R[x] = Pr[R = x]$ if $x \in Range(R)$ and equal to zero if $x \notin Range(R)$.

 $\sum_{x \in V} \mathsf{PDF}_{R}[x] = \sum_{x \in \mathsf{Range}(\mathsf{R})} \mathsf{Pr}[R = x] = 1.$

Cumulative distribution function (CDF): If the codomain is a subset of the real numbers, then the cumulative distribution function is the function $CDF_R : \mathbb{R} \to [0, 1]$, such that $CDF_R[x] = Pr[R \le x]$.

Importantly, neither PDF_R nor CDF_R involves the sample space of an experiment.

Example: If we flip three coins, and *C* counts the number of heads, then $PDF_C[0] = Pr[C = 0] = \frac{1}{8}$, and $CDF_C[2.3] = Pr[C \le 2.3] = Pr[C = 0] + Pr[C = 1] + Pr[C = 2] = \frac{7}{8}$.

Q: What is $CDF_C[5.8]$? Ans: 1.

For a general random variable R, as $x \to \infty$, $CDF_R[x] \to 1$ and $x \to -\infty$, $CDF_R[x] \to 0$.

Back to throwing dice

Q: Suppose we throw two standard dice one after the other. Let us define T to be the random variable equal to the sum of the dice. Plot PDF_T and CDF_T

Recall that $T : \{1, 2, 3, 4, 5, 6\} \times \{1, 2, 3, 4, 5, 6\} \rightarrow V$ where $V = \{2, 3, 4, \dots 12\}$.

 $\mathsf{PDF}_{\mathcal{T}}: \mathcal{V} \to [0,1] \text{ and } \mathsf{CDF}_{\mathcal{T}}: \mathbb{R} \to [0,1].$

For example, $PDF_{T}[4] = Pr[T = 4] = \frac{3}{36}$ and $PDF_{T}[12] = Pr[T = 12] = \frac{1}{36}$.

Questions?

Distributions

Many random variables turn out to have the same PDF and CDF. In other words, even though R and T might be different random variables on different probability spaces, it is often the case that $PDF_R = PDF_T$. Hence, by studying the properties of such PDFs, we can study different random variables and experiments.

Distribution over a random variable can be fully specified using the cumulative distribution function (CDF) (usually denoted by F). The corresponding probability density function (PDF) is denoted by f.

Common Discrete Distributions in Computer Science:

- Bernoulli Distribution
- Uniform Distribution
- Binomial Distribution
- Geometric Distribution

Bernoulli Distribution

Canonical Example: We toss a biased coin such that the probability of getting a heads is p. Let R be the random variable such that R = 1 when the coin comes up heads and R = 0 if the coin comes up tails. R follows the Bernoulli distribution.

 PDF_R for Bernoulli distribution: $f: \{0, 1\} \rightarrow [0, 1]$ meaning that Bernoulli random variables take values in $\{0, 1\}$. It can be fully specified by the "probability of success" (of an experiment) p (probability of getting a heads in the example). Formally, PDF_R is given by:

$$f(1) = p$$
 ; $f(0) = q := 1 - p$.

In the example, $\Pr[R = 1] = f(1) = p = \Pr[\text{event that we get a heads}].$

 CDF_R for Bernoulli distribution: $F : \mathbb{R} \to [0, 1]$:

$$F(x) = 0 \qquad (for \ x < 0)$$

$$= 1 - p$$
 (for $0 \le x < 1$)

 $=1 \qquad \qquad ({\rm for}\; x\geq 1)$

Uniform Distribution

Canonical Example: We roll a standard die. Let R be the random variable equal to the number that shows up on the die. R follows the uniform distribution.

A random variable R that takes on each possible value in its codomain V with the same probability is said to be uniform.

 PDF_R for Uniform distribution: $f: V \to [0, 1]$ such that for all $v \in V$, f(v) = 1/|v|. In the example, $f(1) = f(2) = \ldots = f(6) = \frac{1}{6}$.

 CDF_R for Uniform distribution: For *n* elements in *V* arranged in increasing order – (v_1, v_2, \ldots, v_n) , the CDF is:

$$F(x) = 0$$
 (for $x < v_1$)
 $= k/n$ (for $v_k \le x < v_{k+1}$)
 $= 1$ (for $x \ge v_n$)

Q: If X has a Bernoulli distribution, when is X also uniform? Ans: When p = 1/2

Binomial Distribution

Canonical Example: We toss n biased coins independently. The probability of getting a heads for each coin is p. Let R be the random variable equal to the number of heads in the n coin tosses. R follows the Binomial distribution.

PDF_R for Binomial distribution: $f : \{0, 1, 2, ..., n\} \rightarrow [0, 1]$. For $k \in \{0, 1, ..., n\}$, $f(k) = {n \choose k} p^k (1-p)^{n-k}$.

Proof: Let E_k be the event we get k heads. Let A_i be the event we get a heads in toss i.

$$\begin{aligned} E_{k} &= (A_{1} \cap A_{2} \dots A_{k} \cap A_{k+1}^{c} \cap A_{k+2}^{c} \cap \dots \cap A_{n}^{c}) \cup (A_{1}^{c} \cap A_{2} \dots A_{k} \cap A_{k+1} \cap A_{k+2}^{c} \cap \dots \cap A_{n}^{c}) \cup \dots \\ \Pr[E_{k}] &= \Pr[(A_{1} \cap A_{2} \dots A_{k} \cap A_{k+1}^{c} \cap A_{k+2}^{c} \cap \dots \cap A_{n}^{c})] + \Pr[A_{1}^{c} \cap A_{2} \dots A_{k} \cap A_{k+1} \cap \dots \cap] + \dots \\ &= \Pr[A_{1}] \Pr[A_{2}] \Pr[A_{k}] \Pr[A_{k+1}^{c}] \Pr[A_{k+2}^{c}] \dots \Pr[A_{n}^{c}] + \dots \quad \text{(Independence of tosses)} \\ &= p^{k} (1-p)^{n-k} + p^{k} (1-p)^{n-k} + \dots \\ &\implies \Pr[E_{k}] = \binom{n}{k} p^{k} (1-p)^{n-k} \end{aligned}$$

(Number of terms = number of ways to choose the k tosses that result in heads = $\binom{n}{k}$)

For the Binomial distribution, $PDF_R(k) = \binom{n}{k}p^k(1-p)^{n-k}$.

10

Q: Prove that $\sum_{k \in \text{Range}(R)} \text{PDF}_R[k] = 1$. By the Binomial Theorem, $\sum_{k \in \text{Range}(R)} \text{PDF}_R[k] = \sum_{k=0}^n \binom{n}{k} p^k (1-p)^{n-k} = (p+1-p)^n = 1$.

 CDF_R for Binomial distribution: $F : \mathbb{R} \to [0, 1]$:

F

$$f(x) = 0$$
 (for $x < 0$)
 $= \sum_{i=0}^{k} {n \choose i} p^{i} (1-p)^{n-i}$ (for $k \le x < k+1$)
 $= 1.$ (for $x \ge n$)

Geometric Distribution

Canonical Example: We toss a biased coin independently multiple times. The probability of getting a heads is p. Let R be the random variable equal to the number of tosses needed to get the first heads. R follows the geometric distribution.

PDF_R for Geometric distribution: $f : \{1, 2, ...\} \rightarrow [0, 1]$. For $k \in \{1, 2, ..., \infty\}$, $f(k) = (1 - p)^{k-1} p$.

Proof: Let E_k be the event that we need k tosses to get the first heads. Let A_i be the event that we get a heads in toss i.

 $E_{k} = A_{1}^{c} \cap A_{2}^{c} \cap \ldots \cap A_{k}$ $\Pr[E_{k}] = \Pr[A_{1}^{c} \cap A_{2}^{c} \cap \ldots \cap A_{k}] = \Pr[A_{1}^{c}] \Pr[A_{2}^{c}] \ldots \Pr[A_{k}] \quad (\text{Independence of tosses})$ $\implies \Pr[E_{k}] = (1-p)^{k-1}p$

Q: Prove that $\sum_{k \in \text{Range}(R)} \text{PDF}_R[k] = 1$. By the sum of geometric series, $\sum_{k \in \text{Range}(R)} \text{PDF}_R[k] = \sum_{k=1}^{\infty} (1-p)^{k-1}p = \frac{p}{1-(1-p)} = 1$. For the Geometric distribution, $PDF_R(k) = (1 - p)^{k-1}p$.

 CDF_R for Geometric distribution: $F: \mathbb{R} \to [0, 1]$:

$$F(x) = 0 (for x < 1)$$

= $\sum_{i=1}^{k} (1-p)^{i-1}p$ (for $k \le x < k+1$)

Questions?