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Recap - (Basic) Frievald's Algorithm

Q: For n x n matrices A, B and D, is D = AB?

Algorithm:

1. Generate a random n-bit vector x, by making each bit x; either 0 or 1 independently with
probability % E.g, for n =2, toss a fair coin independently twice with the scheme — H is 0
and T is 1). If we get HT, then set x = [0; 1].
2. Compute t = Bx and y = At = A(Bx) and z = Dx.
3. Output “yes" if y = z (all entries need to be equal), else output “no”.
Computational complexity: Step 1 can be done in O(n) time. Step 2 requires 3 matrix vector

multiplications and can be done in O(n?) time. Step 3 requires comparing two n-dimensional
vectors and can be done in O(n) time. Hence, the total computational complexity is O(n?).



(Basic) Frievald's Algorithm

Let us analyze the algorithm for general matrix multiplication.

Case (i): If D = AB, does the algorithm always output “yes"? Yes! Since D = AB, for any
vector x, Dx = ABx.

Case (ii) If D # AB, does the algorithm always output “no"?

Claim: For any input matrices A, B, D if D # AB, then the (Basic) Frievald’s algorithm will
output “no” with probability > %

Yes | No
D=AB| 1 | 0
D#AB | <1 |>3

Table 1: Probabilities for Basic Frievalds Algorithm



(Basic) Frievald's Algorithm

Proof: If D # AB, we wish to compute the probability that algorithm outputs “yes” and prove
that it less than %

Define E .= (AB—D) and r .= Ex = (AB—D)x =y —z. If D # AB, then 3(i, ) s.t. E;j #0.

Pr[Algorithm outputs “yes"] = Pr[y = z] = Pr[r = 0]
=Prl(n=0N(r=0N...N(=0)N..]

=Pr[(r=0)]Pr[(n=0)N(r=0)N...N(r, =0)|r =0]
(By def. of conditional probability)
= Pr[Algorithm outputs "yes"] < Pr[r; = 0] (Probabilities are in [0, 1])

To complete the proof, on the next slide, we will prove that Pr[r; = 0] < %



(Basic) Frievald's Algorithm

=Y Euwxx=Ex+) Ewx=Ejpg+w (0= Erx)
= Py
Pr[r; = 0] = Pr[r; = OJw = 0] Pr[w = 0] + Pr[r; = O|w # 0] Pr[w # 0]
(By the law of total probability)

Pr[ri = 0lw = 0] = Pr[x; = 0] = % (Since E;; # 0 and Pr[x; = 1] = 1)
Pr[ri =0lw # 0] = Pr[(x; = 1) N E; j = —w] = Pr[(x; = 1)] Pr[E; j = —w|x; = 1]
(By def. of conditional probability)
— Prlr = 0w # 0] < Prl(y = 1)] = - (Probabilities are in [0, 1], Prj = 1] = 1)
= Pr[r,-:O]S%Pr[w:O]+%Pr[w7éO] fPr[w—O]—|— [l—Pr[w_O]]—%

(Pr[E€] =1 — Pr[E])
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= Pr[Algorithm outputs “yes'] < Pr[r; =0] < =
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(Basic) Frievald's Algorithm

Hence, if D # AB, the Algorithm outputs “yes” with probability < % — the Algorithm
outputs “no” with probability > 1.

In the worst case, the algorithm can be incorrect half the time! We promised the algorithm
would return the correct answer with “high” probability close to 1.

A common trick in randomized algorithms is to have m independent trials of an algorithm and
aggregate the answer in some way, reducing the probability of error, thus amplifying the
probability of success.



Frievald’s Algorithm

By repeating the Basic Frievald’s Algorithm m times, we will amplify the probability of success.
The resulting complete Frievald's Algorithm is given by:

1 Run the Basic Frievald's Algorithm for m independent runs.
2 If any run of the Basic Frievald's Algorithm outputs “no”, output “no”.

3 If all runs of the Basic Frievald's Algorithm output “yes”, output “yes".

Yes No
D = AB 1 0
D#AB | <4 | >1-4L

Table 2: Probabilities for Frievald's Algorithm

If m = 20, then Frievald's algorithm will make mistake with probability 1/22° ~ 10~°.

Computational Complexity: O(mn?)



Probability Amplification

Consider a randomized algorithm A that is supposed to solve a binary decision problem i.e. it is
supposed to answer either Yes or No. It has a one-sided error — (i) if the true answer is Yes, then
the algorithm A correctly outputs Yes with probability 1, but (ii) if the true answer is No, the
algorithm A incorrectly outputs Yes with probability < 1.

Let us define a new algorithm B that runs algorithm A m times, and if any run of A outputs No,
algorithm B outputs No. If all runs of A output Yes, algorithm B outputs Yes.

Q: What is the probability that algorithm B correctly outputs Yes if the true answer is Yes, and
correctly outputs No if the true answer is No?



Probability Amplification - Analysis

If A; denotes run i of Algorithm A, then

Pr[B outputs Yes | true answer is Yes ]

= Pr[A; outputs Yes N A outputs Yes N ...N Ay, outputs Yes | true answer is Yes ]
m

= H Pr[A; outputs Yes | true answer is Yes | =1 (Independence of runs)
i=1

Pr[B outputs No | true answer is No ]

=1 — Pr[B outputs Yes | true answer is No |

=1 — Pr[A; outputs Yes N A outputs Yes N...N Ay, outputs Yes | true answer is No ]
m
. 1
=1- H Pr[A; outputs Yes | true answer is No | > 1 — o
i=1

When the true answer is Yes, both B and A correctly output Yes. When the true answer is No,
A incorrectly outputs Yes with probability < % but B incorrectly outputs Yes with probability
< 5= << 3. By repeating the experiment, we have “amplified” the probability of success.



Questions?



Random Variables

Definition: A random “variable” R on a probability space is a total function whose domain is the
sample space S. The codomain is usually a subset of the real numbers.

Example: Suppose we toss three independent, unbiased coins. Let C be the number of heads
that appear.

S = {HHH,HHT ,HTH, HTT, THH, THT, TTH, TTT}

C is a total function that maps each outcome in S to a number as follows: C(HHH) = 3,
C(HHT) = C(HTH) = C(THH) =2, C(HTT) = C(THT) = C(TTH) =1, C(TTT) = 0.

C is a random variable that counts the number of heads in 3 tosses of the coin.

Example: | toss a coin, and define the random variable R which is equal to 1 when | get a heads,
and equal to 0 when | get a tails.

Bernoulli random variables: Random variables with the codomain {0, 1} are called Bernoulli
random variables. E.g. R is a Bernoulli r.v.



Back to throwing dice

Q: Suppose we throw two standard dice one after the other. Let us define R to be the random
variable equal to the sum of the dice. What is the domain, range of R?

Ans: R:{1,2,3,4,5,6} x {1,2,3,4,5,6} — NN [2,12].
R((4,7)) = 11, R((4,1)) = 5, R((1,1)) = 2, R((6,6)) = 12.
Q: Three balls are randomly selected from an urn containing 20 balls numbered 1 through 20.

The random variable M is the maximal value on the selected balls. What is the domain, range of
M? Ans: M:{1,2,...,20} x {1,2,...,20} x {1,2,...,20} — {1,2,...,20}

Q: In the above example, what is 2 x M((1,4,6))? Is M an invertible function? Ans: 12, No
since M maps both {1,2,5) and (3,4,5) to 5.
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Random Variables and Events

Indicator Random Variable: An indicator random variable maps every outcome to either 0 or 1.

Example: Suppose we throw two standard dice, and define M to be the random variable that is 1
iff both throws of the dice produce a prime number, else it is 0.

M:{1,2,3,4,5,6} x {1,2,3,4,5,6} — {0,1}. M((2,3)) =1, M((3,6)) = 0.

An indicator random variable partitions the sample space into those outcomes mapped to 1 and

those outcomes mapped to 0.

Example: When throwing two dice, if E is the event that both throws of the dice result in a
prime number, then random variable M = 1 iff event E happens, else M = 0.

The indicator random variable corresponding to an event E is denoted as Zg, meaning that for
weE, Tglw] =1 and for w ¢ E, Zg[w] = 0. In the above example, M = Z¢ and since
(2,4) ¢ E, M((2,4)) = 0 and since (3,5) € E, M((3,5)) = 1.
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