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Recap - (Basic) Frievald’s Algorithm

Q: For n × n matrices A, B and D, is D = AB?

Algorithm:

1. Generate a random n-bit vector x , by making each bit xi either 0 or 1 independently with
probability 1

2 . E.g, for n = 2, toss a fair coin independently twice with the scheme – H is 0
and T is 1). If we get HT , then set x = [0 ; 1].

2. Compute t = Bx and y = At = A(Bx) and z = Dx .

3. Output “yes” if y = z (all entries need to be equal), else output “no”.

Computational complexity: Step 1 can be done in O(n) time. Step 2 requires 3 matrix vector
multiplications and can be done in O(n2) time. Step 3 requires comparing two n-dimensional
vectors and can be done in O(n) time. Hence, the total computational complexity is O(n2).
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(Basic) Frievald’s Algorithm

Let us analyze the algorithm for general matrix multiplication.

Case (i): If D = AB, does the algorithm always output “yes”? Yes! Since D = AB, for any
vector x , Dx = ABx .

Case (ii) If D ̸= AB, does the algorithm always output “no”?

Claim: For any input matrices A,B,D if D ̸= AB, then the (Basic) Frievald’s algorithm will
output “no” with probability ≥ 1

2 .

Yes No
D = AB 1 0
D ̸= AB < 1

2 ≥ 1
2

Table 1: Probabilities for Basic Frievalds Algorithm
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(Basic) Frievald’s Algorithm

Proof : If D ̸= AB, we wish to compute the probability that algorithm outputs “yes” and prove
that it less than 1

2 .
Define E := (AB −D) and r := Ex = (AB −D)x = y − z . If D ̸= AB , then ∃(i , j) s.t. Ei,j ̸= 0.

Pr[Algorithm outputs “yes”] = Pr[y = z ] = Pr[r = 0]

= Pr[(r1 = 0) ∩ (r2 = 0) ∩ . . . ∩ (ri = 0) ∩ . . .]

= Pr[(ri = 0)] Pr[(r1 = 0) ∩ (r2 = 0) ∩ . . . ∩ (rn = 0)|ri = 0]
(By def. of conditional probability)

=⇒ Pr[Algorithm outputs “yes”] ≤ Pr[ri = 0] (Probabilities are in [0, 1])

To complete the proof, on the next slide, we will prove that Pr[ri = 0] ≤ 1
2 .
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(Basic) Frievald’s Algorithm

ri =
n∑

k=1

Ei,kxk = Ei,jxj +
∑
k ̸=j

Ei,kxk = Ei,jxj + ω (ω :=
∑

k ̸=j Ei,kxk)

Pr[ri = 0] = Pr[ri = 0|ω = 0] Pr[ω = 0] + Pr[ri = 0|ω ̸= 0] Pr[ω ̸= 0]
(By the law of total probability)

Pr[ri = 0|ω = 0] = Pr[xj = 0] =
1
2

(Since Ei,j ̸= 0 and Pr[xj = 1] = 1
2 )

Pr[ri = 0|ω ̸= 0] = Pr[(xj = 1) ∩ Ei,j = −ω] = Pr[(xj = 1)] Pr[Ei,j = −ω|xj = 1]
(By def. of conditional probability)

=⇒ Pr[ri = 0|ω ̸= 0] ≤ Pr[(xj = 1)] =
1
2

(Probabilities are in [0, 1], Pr[xj = 1] = 1
2 )

=⇒ Pr[ri = 0] ≤ 1
2
Pr[ω = 0] +

1
2
Pr[ω ̸= 0] =

1
2
Pr[ω = 0] +

1
2
[1 − Pr[ω = 0]] =

1
2

(Pr[E c ] = 1 − Pr[E ])

=⇒ Pr[Algorithm outputs “yes”] ≤ Pr[ri = 0] ≤ 1
2
.
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(Basic) Frievald’s Algorithm

Hence, if D ̸= AB, the Algorithm outputs “yes” with probability ≤ 1
2 =⇒ the Algorithm

outputs “no” with probability ≥ 1
2 .

In the worst case, the algorithm can be incorrect half the time! We promised the algorithm
would return the correct answer with “high” probability close to 1.

A common trick in randomized algorithms is to have m independent trials of an algorithm and
aggregate the answer in some way, reducing the probability of error, thus amplifying the
probability of success.
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Frievald’s Algorithm

By repeating the Basic Frievald’s Algorithm m times, we will amplify the probability of success.
The resulting complete Frievald’s Algorithm is given by:

1 Run the Basic Frievald’s Algorithm for m independent runs.
2 If any run of the Basic Frievald’s Algorithm outputs “no”, output “no”.
3 If all runs of the Basic Frievald’s Algorithm output “yes”, output “yes”.

Yes No
D = AB 1 0
D ̸= AB < 1

2m ≥ 1 − 1
2m

Table 2: Probabilities for Frievald’s Algorithm

If m = 20, then Frievald’s algorithm will make mistake with probability 1/220 ≈ 10−6.

Computational Complexity: O(mn2)
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Probability Amplification

Consider a randomized algorithm A that is supposed to solve a binary decision problem i.e. it is
supposed to answer either Yes or No. It has a one-sided error – (i) if the true answer is Yes, then
the algorithm A correctly outputs Yes with probability 1, but (ii) if the true answer is No, the
algorithm A incorrectly outputs Yes with probability ≤ 1

2 .

Let us define a new algorithm B that runs algorithm A m times, and if any run of A outputs No,
algorithm B outputs No. If all runs of A output Yes, algorithm B outputs Yes.

Q: What is the probability that algorithm B correctly outputs Yes if the true answer is Yes, and
correctly outputs No if the true answer is No?
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Probability Amplification - Analysis

If Ai denotes run i of Algorithm A, then

Pr[B outputs Yes | true answer is Yes ]

= Pr[A1 outputs Yes ∩ A2 outputs Yes ∩ . . . ∩ Am outputs Yes | true answer is Yes ]

=
m∏
i=1

Pr[Ai outputs Yes | true answer is Yes ] = 1 (Independence of runs)

Pr[B outputs No | true answer is No ]

= 1 − Pr[B outputs Yes | true answer is No ]

= 1 − Pr[A1 outputs Yes ∩ A2 outputs Yes ∩ . . . ∩ Am outputs Yes | true answer is No ]

= 1 −
m∏
i=1

Pr[Ai outputs Yes | true answer is No ] ≥ 1 − 1
2m

.

When the true answer is Yes, both B and A correctly output Yes. When the true answer is No,
A incorrectly outputs Yes with probability < 1

2 , but B incorrectly outputs Yes with probability
< 1

2m << 1
2 . By repeating the experiment, we have “amplified” the probability of success. 8



Questions?
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Random Variables

Definition: A random “variable” R on a probability space is a total function whose domain is the
sample space S. The codomain is usually a subset of the real numbers.

Example: Suppose we toss three independent, unbiased coins. Let C be the number of heads
that appear.

S = {HHH,HHT ,HTH,HTT ,THH,THT ,TTH,TTT}

C is a total function that maps each outcome in S to a number as follows: C (HHH) = 3,
C (HHT ) = C (HTH) = C (THH) = 2, C (HTT ) = C (THT ) = C (TTH) = 1, C (TTT ) = 0.

C is a random variable that counts the number of heads in 3 tosses of the coin.

Example: I toss a coin, and define the random variable R which is equal to 1 when I get a heads,
and equal to 0 when I get a tails.

Bernoulli random variables: Random variables with the codomain {0, 1} are called Bernoulli
random variables. E.g. R is a Bernoulli r.v.
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Back to throwing dice

Q: Suppose we throw two standard dice one after the other. Let us define R to be the random
variable equal to the sum of the dice. What is the domain, range of R?

Ans: R : {1, 2, 3, 4, 5, 6} × {1, 2, 3, 4, 5, 6} → N ∩ [2, 12].
R((4, 7)) = 11, R((4, 1)) = 5, R((1, 1)) = 2, R((6, 6)) = 12.

Q: Three balls are randomly selected from an urn containing 20 balls numbered 1 through 20.
The random variable M is the maximal value on the selected balls. What is the domain, range of
M? Ans: M : {1, 2, . . . , 20} × {1, 2, . . . , 20} × {1, 2, . . . , 20} → {1, 2, . . . , 20}

Q: In the above example, what is 2 ×M((1, 4, 6))? Is M an invertible function? Ans: 12, No
since M maps both {1, 2, 5) and (3, 4, 5) to 5.
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Random Variables and Events

Indicator Random Variable: An indicator random variable maps every outcome to either 0 or 1.

Example: Suppose we throw two standard dice, and define M to be the random variable that is 1
iff both throws of the dice produce a prime number, else it is 0.

M : {1, 2, 3, 4, 5, 6} × {1, 2, 3, 4, 5, 6} → {0, 1}. M((2, 3)) = 1, M((3, 6)) = 0.

An indicator random variable partitions the sample space into those outcomes mapped to 1 and
those outcomes mapped to 0.

Example: When throwing two dice, if E is the event that both throws of the dice result in a
prime number, then random variable M = 1 iff event E happens, else M = 0.

The indicator random variable corresponding to an event E is denoted as IE , meaning that for
ω ∈ E , IE [ω] = 1 and for ω /∈ E , IE [ω] = 0. In the above example, M = IE and since
(2, 4) /∈ E , M((2, 4)) = 0 and since (3, 5) ∈ E , M((3, 5)) = 1.
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