CMPT 210: Probability and Computing

Lecture 11

Sharan Vaswani
February 9, 2023

Recap - (Basic) Frievald's Algorithm

Q: For $n \times n$ matrices A, B and D, is $D=A B$?

Algorithm:

1. Generate a random n-bit vector x, by making each bit x_{i} either 0 or 1 independently with probability $\frac{1}{2}$. E.g, for $n=2$, toss a fair coin independently twice with the scheme -H is 0 and T is 1). If we get $H T$, then set $x=[0 ; 1]$.
2. Compute $t=B x$ and $y=A t=A(B x)$ and $z=D x$.
3. Output "yes" if $y=z$ (all entries need to be equal), else output "no".

Computational complexity: Step 1 can be done in $O(n)$ time. Step 2 requires 3 matrix vector multiplications and can be done in $O\left(n^{2}\right)$ time. Step 3 requires comparing two n-dimensional vectors and can be done in $O(n)$ time. Hence, the total computational complexity is $O\left(n^{2}\right)$.

(Basic) Frievald's Algorithm

Let us analyze the algorithm for general matrix multiplication.
Case (i): If $D=A B$, does the algorithm always output "yes"? Yes! Since $D=A B$, for any vector $x, D x=A B x$.

Case (ii) If $D \neq A B$, does the algorithm always output "no"?
Claim: For any input matrices A, B, D if $D \neq A B$, then the (Basic) Frievald's algorithm will output "no" with probability $\geq \frac{1}{2}$.

$$
\begin{array}{|c|c|c|}
& \text { Yes } & \text { No } \\
D=A B & 1 & 0 \\
D \neq A B & <\frac{1}{2} & \geq \frac{1}{2}
\end{array}
$$

Table 1: Probabilities for Basic Frievalds Algorithm

(Basic) Frievald's Algorithm

Proof: If $D \neq A B$, we wish to compute the probability that algorithm outputs "yes" and prove that it less than $\frac{1}{2}$.
Define $E:=(A B-D)$ and $r:=E x=(A B-D) x=y-z$. If $D \neq A B$, then $\exists(i, j)$ s.t. $E_{i, j} \neq 0$.

$$
\begin{aligned}
\operatorname{Pr}[\text { Algorithm outputs "yes" }] & =\operatorname{Pr}[y=z]=\operatorname{Pr}[r=\mathbf{0}] \\
& =\operatorname{Pr}\left[\left(r_{1}=0\right) \cap\left(r_{2}=0\right) \cap \ldots \cap\left(r_{i}=0\right) \cap \ldots\right] \\
& =\operatorname{Pr}\left[\left(r_{i}=0\right)\right] \operatorname{Pr}\left[\left(r_{1}=0\right) \cap\left(r_{2}=0\right) \cap \ldots \cap\left(r_{n}=0\right) \mid r_{i}=0\right]
\end{aligned}
$$

(By def. of conditional probability)
$\Longrightarrow \operatorname{Pr}[$ Algorithm outputs "yes" $] \leq \operatorname{Pr}\left[r_{i}=0\right]$ (Probabilities are in $[0,1]$)

To complete the proof, on the next slide, we will prove that $\operatorname{Pr}\left[r_{i}=0\right] \leq \frac{1}{2}$.

(Basic) Frievald's Algorithm

$$
\begin{array}{r}
r_{i}=\sum_{k=1}^{n} E_{i, k} x_{k}=E_{i, j} x_{j}+\sum_{k \neq j} E_{i, k} x_{k}=E_{i, j} x_{j}+\omega \quad\left(\omega:=\sum_{k \neq j} E_{i, k} x_{k}\right) \\
\operatorname{Pr}\left[r_{i}=0\right]=\operatorname{Pr}\left[r_{i}=0 \mid \omega=0\right] \operatorname{Pr}[\omega=0]+\operatorname{Pr}\left[r_{i}=0 \mid \omega \neq 0\right] \operatorname{Pr}[\omega \neq 0] \\
\text { (By the law of total probability) } \\
\operatorname{Pr}\left[r_{i}=0 \mid \omega=0\right]=\operatorname{Pr}\left[x_{j}=0\right]=\frac{1}{2} \quad \begin{array}{c}
\text { (Since } \left.E_{i, j} \neq 0 \text { and } \operatorname{Pr}\left[x_{j}=1\right]=\frac{1}{2}\right) \\
\operatorname{Pr}\left[r_{i}=0 \mid \omega \neq 0\right]=\operatorname{Pr}\left[\left(x_{j}=1\right) \cap E_{i, j}=-\omega\right]=\operatorname{Pr}\left[\left(x_{j}=1\right)\right] \operatorname{Pr}\left[E_{i, j}=-\omega \mid x_{j}=1\right]
\end{array} \\
\text { (By def. of conditional probability) } \\
\Longrightarrow \operatorname{Pr}\left[r_{i}=0 \mid \omega \neq 0\right] \leq \operatorname{Pr}\left[\left(x_{j}=1\right)\right]=\frac{1}{2} \quad \begin{array}{l}
\text { (Probabilities are in } \left.[0,1], \operatorname{Pr}\left[x_{j}=1\right]=\frac{1}{2}\right) \\
\Longrightarrow \operatorname{Pr}\left[r_{i}=0\right] \leq \frac{1}{2} \operatorname{Pr}[\omega=0]+\frac{1}{2} \operatorname{Pr}[\omega \neq 0]=\frac{1}{2} \operatorname{Pr}[\omega=0]+\frac{1}{2}[1-\operatorname{Pr}[\omega=0]]=\frac{1}{2} \\
\quad\left(\operatorname{Pr}\left[E^{c}\right]=1-\operatorname{Pr}[E]\right)
\end{array} \\
\Longrightarrow \operatorname{Pr}[\text { Algorithm outputs "yes" }] \leq \operatorname{Pr}\left[r_{i}=0\right] \leq \frac{1}{2} .
\end{array}
$$

(Basic) Frievald's Algorithm

Hence, if $D \neq A B$, the Algorithm outputs "yes" with probability $\leq \frac{1}{2} \Longrightarrow$ the Algorithm outputs "no" with probability $\geq \frac{1}{2}$.
In the worst case, the algorithm can be incorrect half the time! We promised the algorithm would return the correct answer with "high" probability close to 1 .

A common trick in randomized algorithms is to have m independent trials of an algorithm and aggregate the answer in some way, reducing the probability of error, thus amplifying the probability of success.

Frievald's Algorithm

By repeating the Basic Frievald's Algorithm m times, we will amplify the probability of success. The resulting complete Frievald's Algorithm is given by:

1 Run the Basic Frievald's Algorithm for m independent runs.
2 If any run of the Basic Frievald's Algorithm outputs "no", output "no".
3 If all runs of the Basic Frievald's Algorithm output "yes", output "yes".

$$
\left\lvert\, \begin{array}{c|c|c|}
& \text { Yes } & \text { No } \\
D=A B & 1 & 0 \\
D \neq A B & <\frac{1}{2^{m}} & \geq 1-\frac{1}{2^{m}}
\end{array}\right.
$$

Table 2: Probabilities for Frievald's Algorithm

If $m=20$, then Frievald's algorithm will make mistake with probability $1 / 2^{20} \approx 10^{-6}$.
Computational Complexity: $O\left(m n^{2}\right)$

Probability Amplification

Consider a randomized algorithm \mathcal{A} that is supposed to solve a binary decision problem i.e. it is supposed to answer either Yes or No. It has a one-sided error - (i) if the true answer is Yes, then the algorithm \mathcal{A} correctly outputs Yes with probability 1, but (ii) if the true answer is No, the algorithm \mathcal{A} incorrectly outputs Yes with probability $\leq \frac{1}{2}$.

Let us define a new algorithm \mathcal{B} that runs algorithm $\mathcal{A} m$ times, and if any run of \mathcal{A} outputs No, algorithm \mathcal{B} outputs No. If all runs of \mathcal{A} output Yes, algorithm \mathcal{B} outputs Yes.

Q: What is the probability that algorithm \mathcal{B} correctly outputs Yes if the true answer is Yes, and correctly outputs No if the true answer is No?

Probability Amplification - Analysis

$$
\begin{aligned}
& \text { If } A_{i} \text { denotes run } i \text { of Algorithm } \mathcal{A} \text {, then } \\
& \quad \operatorname{Pr}[\mathcal{B} \text { outputs Yes } \mid \text { true answer is Yes }] \\
& =\operatorname{Pr}\left[\mathcal{A}_{1} \text { outputs Yes } \cap \mathcal{A}_{2} \text { outputs Yes } \cap \ldots \cap \mathcal{A}_{m} \text { outputs Yes } \mid \text { true answer is Yes }\right] \\
& =\prod_{i=1}^{m} \operatorname{Pr}\left[\mathcal{A}_{i} \text { outputs Yes } \mid \text { true answer is } \mathrm{Yes}\right]=1 \quad \text { (Independence of runs) } \\
& \operatorname{Pr}[\mathcal{B} \text { outputs } \mathrm{No} \mid \text { true answer is No }] \\
& =1-\operatorname{Pr}[\mathcal{B} \text { outputs Yes } \mid \text { true answer is No }] \\
& =1-\operatorname{Pr}\left[\mathcal{A}_{1} \text { outputs Yes } \cap \mathcal{A}_{2} \text { outputs Yes } \cap \ldots \cap \mathcal{A}_{m} \text { outputs Yes } \mid \text { true answer is No }\right] \\
& =1-\prod_{i=1}^{m} \operatorname{Pr}\left[\mathcal{A}_{i} \text { outputs Yes } \mid \text { true answer is } \mathrm{No}\right] \geq 1-\frac{1}{2^{m}} .
\end{aligned}
$$

When the true answer is Yes, both \mathcal{B} and \mathcal{A} correctly output Yes. When the true answer is No, \mathcal{A} incorrectly outputs Yes with probability $<\frac{1}{2}$, but \mathcal{B} incorrectly outputs Yes with probability $<\frac{1}{2^{m}} \ll \frac{1}{2}$. By repeating the experiment, we have "amplified" the probability of success.

Questions?

Random Variables

Definition: A random "variable" R on a probability space is a total function whose domain is the sample space \mathcal{S}. The codomain is usually a subset of the real numbers.

Example: Suppose we toss three independent, unbiased coins. Let C be the number of heads that appear.
$\mathcal{S}=\{H H H, H H T, H T H$, HTT, THH, THT, TTH, TTT $\}$
C is a total function that maps each outcome in \mathcal{S} to a number as follows: $C(H H H)=3$, $C(H H T)=C(H T H)=C(T H H)=2, C(H T T)=C(T H T)=C(T T H)=1, C(T T T)=0$.
C is a random variable that counts the number of heads in 3 tosses of the coin.
Example: I toss a coin, and define the random variable R which is equal to 1 when I get a heads, and equal to 0 when I get a tails.

Bernoulli random variables: Random variables with the codomain $\{0,1\}$ are called Bernoulli random variables. E.g. R is a Bernoulli r.v.

Back to throwing dice

Q: Suppose we throw two standard dice one after the other. Let us define R to be the random variable equal to the sum of the dice. What is the domain, range of R ?

Ans: $R:\{1,2,3,4,5,6\} \times\{1,2,3,4,5,6\} \rightarrow \mathbb{N} \cap[2,12]$.
$R((4,7))=11, R((4,1))=5, R((1,1))=2, R((6,6))=12$.
Q: Three balls are randomly selected from an urn containing 20 balls numbered 1 through 20. The random variable M is the maximal value on the selected balls. What is the domain, range of M ? Ans: $M:\{1,2, \ldots, 20\} \times\{1,2, \ldots, 20\} \times\{1,2, \ldots, 20\} \rightarrow\{1,2, \ldots, 20\}$

Q: In the above example, what is $2 \times M((1,4,6))$? Is M an invertible function? Ans: 12 , No since M maps both $\{1,2,5)$ and $(3,4,5)$ to 5 .

Random Variables and Events

Indicator Random Variable: An indicator random variable maps every outcome to either 0 or 1. Example: Suppose we throw two standard dice, and define M to be the random variable that is 1 iff both throws of the dice produce a prime number, else it is 0 .
$M:\{1,2,3,4,5,6\} \times\{1,2,3,4,5,6\} \rightarrow\{0,1\} . M((2,3))=1, M((3,6))=0$.
An indicator random variable partitions the sample space into those outcomes mapped to 1 and those outcomes mapped to 0 .

Example: When throwing two dice, if E is the event that both throws of the dice result in a prime number, then random variable $M=1$ iff event E happens, else $M=0$.

The indicator random variable corresponding to an event E is denoted as \mathcal{I}_{E}, meaning that for $\omega \in E, \mathcal{I}_{E}[\omega]=1$ and for $\omega \notin E, \mathcal{I}_{E}[\omega]=0$. In the above example, $M=\mathcal{I}_{E}$ and since $(2,4) \notin E, M((2,4))=0$ and since $(3,5) \in E, M((3,5))=1$.

