CMPT 210: Probability and Computing

Lecture 10

Sharan Vaswani
February 3, 2023

Back to throwing dice - Independent Events

Q: Suppose we throw two standard dice one after the other. What is the probability that we get two 6's in a row?
$E=$ We get a 6 in the second throw. $F=$ We get a 6 in the first throw. $E \cap F=$ we get two 6 's in a row. We are computing $\operatorname{Pr}[E \cap F] . \operatorname{Pr}[E]=\operatorname{Pr}[F]=\frac{1}{6}$.
$\operatorname{Pr}[E \mid F]=\frac{\operatorname{Pr}[E \cap F]}{\operatorname{Pr}[F]} \Longrightarrow \operatorname{Pr}[E \cap F]=\operatorname{Pr}[E \mid F] \operatorname{Pr}[F]$.
Since the two dice are independent, knowing that we got a 6 in the first throw does not change the probability that we will get a 6 in the second throw. Hence, $\operatorname{Pr}[E \mid F]=\operatorname{Pr}[E]$ (conditioning does not change the probability of the event).
Hence, $\operatorname{Pr}[E \cap F]=\operatorname{Pr}[E \mid F] \operatorname{Pr}[F]=\operatorname{Pr}[E] \operatorname{Pr}[F]=\frac{1}{6} \frac{1}{6}=\frac{1}{36}$.

Independent Events

Independent Events: Events E and F are said to be independent, if knowledge that F has occurred does not change the probability that E occurs. Formally,

$$
\operatorname{Pr}[E \mid F]=\operatorname{Pr}[E] \quad ; \quad \operatorname{Pr}[E \cap F]=\operatorname{Pr}[E] \operatorname{Pr}[F]
$$

Q: I toss two independent, fair coins. What is the probability that I get the HT sequence?
Define E to be the event that I get a heads in the first toss, and F be the event that I get a tails in the second toss. Since the two coins are independent, events E and F are also independent. $\operatorname{Pr}[E \cap F]=\operatorname{Pr}[E] \operatorname{Pr}[F]=\frac{1}{2} \frac{1}{2}=\frac{1}{4}$.
Q: I randomly choose a number from $\{1,2, \ldots, 10\} . E$ is the event that the number I picked is a prime. F is the event that the number I picked is odd. Are E and F independent?
$\operatorname{Pr}[E]=\frac{2}{5}, \operatorname{Pr}[F]=\frac{1}{2}, \operatorname{Pr}[E \cap F]=\frac{3}{10} . \operatorname{Pr}[E \cap F] \neq \operatorname{Pr}[E] \operatorname{Pr}[F]$. Another way: $\operatorname{Pr}[E \mid F]=\frac{3}{5}$ and $\operatorname{Pr}[E]=\frac{2}{5}$, and hence $\operatorname{Pr}[E \mid F] \neq \operatorname{Pr}[E]$. Conditioning on F tell us that prime number cannot be 2 , so it changes the probability of E.

Independent Events - Example

Q: We have a machine that has 2 independent components. The machine breaks if each of its 2 components break. Suppose each component can break with probability p, what is the probability that the machine does not break?

Let $E_{1}=$ Event that the first component breaks, $E_{2}=$ Event that the second component breaks. $M=$ Event that the machine breaks $=E_{1} \cap E_{2}$.
$\operatorname{Pr}[M]=\operatorname{Pr}\left[E_{1} \cap E_{2}\right]$. Since the two components are independent, E_{1} and E_{2} are independent, meaning that $\operatorname{Pr}\left[E_{1} \cap E_{2}\right]=\operatorname{Pr}\left[E_{1}\right] \operatorname{Pr}\left[E_{2}\right]=p^{2}$.
Probability that the machine does not break $=\operatorname{Pr}\left[M^{c}\right]=1-\operatorname{Pr}[M]=1-p^{2}$.

Independent Events - Examples

Q: We have a new machine that has 2 independent components. The machine breaks if either of its 2 components break. Suppose each component can break with probability p, what is the probability that the machine breaks?

For this machine, let M^{\prime} be the event that it breaks. In this case, $\operatorname{Pr}\left[M^{\prime}\right]=\operatorname{Pr}\left[E_{1} \cup E_{2}\right]$. Incorrect: By the union rule for mutually exclusive events, $\operatorname{Pr}\left[E_{1} \cup E_{2}\right]=\operatorname{Pr}\left[E_{1}\right]+\operatorname{Pr}\left[E_{2}\right]=2 p$. Mistake: Independence does not imply mutual exclusivity and we can not use the union rule. Independence implies that for any two events E and $F, \operatorname{Pr}[E \cap F]=\operatorname{Pr}[E] \operatorname{Pr}[F]$, while mutual exclusivity requires that $\operatorname{Pr}[E \cap F]=0$.

Correct way:

$$
\begin{array}{rlr}
\operatorname{Pr}\left[E_{1} \cup E_{2}\right] & =\operatorname{Pr}\left[E_{1}\right]+\operatorname{Pr}\left[E_{2}\right]-\operatorname{Pr}\left[E_{1} \cap E_{2}\right] \quad \text { (By the inclusion-exclusion rule) } \\
& =\operatorname{Pr}\left[E_{1}\right]+\operatorname{Pr}\left[E_{2}\right]-\operatorname{Pr}\left[E_{1}\right] \operatorname{Pr}\left[E_{2}\right]=2 p-p^{2} \quad \text { (Since } E_{1} \text { and } E_{2} \text { are independent.) }
\end{array}
$$

Questions?

Matrix Multiplication

Given two $n \times n$ matrices $-A$ and B, if $C=A B$, then,

$$
C_{i, j}=\sum_{k=1}^{n} A_{i, k} B_{k, j}
$$

Hence, in the worst case, computing $C_{i, j}$ is an $O(n)$ operation. There are n^{2} entries to fill in C and hence, in the absence of additional structure, matrix multiplication takes $O\left(n^{3}\right)$ time.
There are non-trivial algorithms for doing matrix multiplication more efficiently:

- (Strassen, 1969) Requires $O\left(n^{2.81}\right)$ operations.
- (Coppersmith-Winograd, 1987) Requires $O\left(n^{2.376}\right)$ operations.
- (Alman-Williams, 2020) Requires $O\left(n^{2.373}\right)$ operations.
- Belief is that it can be done in time $O\left(n^{2+\epsilon}\right)$ for $\epsilon>0$.

Verifying Matrix Multiplication

As an example, let us focus on A, B being binary 2×2 matrices.
Example: $A=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right], B=\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]$ then $C=A B=\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]$
Objective: Verify whether a matrix multiplication operation is correct.
Trivial way: Do the matrix multiplication ourselves, and verify it using $O\left(n^{3}\right)$ (or $O\left(n^{2.373}\right)$) operations.

Frievald's Algorithm: Randomized algorithm to verify matrix multiplication with high probability in $O\left(n^{2}\right)$ time.

(Basic) Frievald's Algorithm

Q: For $n \times n$ matrices A, B and D, is $D=A B$?

Algorithm:

1. Generate a random n-bit vector x, by making each bit x_{i} either 0 or 1 independently with probability $\frac{1}{2}$. E.g, for $n=2$, toss a fair coin independently twice with the scheme -H is 0 and T is 1). If we get $H T$, then set $x=[0 ; 1]$.
2. Compute $t=B x$ and $y=A t=A(B x)$ and $z=D x$.
3. Output "yes" if $y=z$ (all entries need to be equal), else output "no".

Computational complexity: Step 1 can be done in $O(n)$ time. Step 2 requires 3 matrix vector multiplications and can be done in $O\left(n^{2}\right)$ time. Step 3 requires comparing two n-dimensional vectors and can be done in $O(n)$ time. Hence, the total computational complexity is $O\left(n^{2}\right)$.

(Basic) Frievald's Algorithm

Let us run the algorithm on an example. Suppose we have generated $x=[1 ; 0]$

$$
\begin{array}{r}
A=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \quad ; \quad B=\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right] \quad ; \quad D=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right] \\
B x=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \quad ; \quad y=A(B x)=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \quad ; \quad z=D x=\left[\begin{array}{l}
1 \\
0
\end{array}\right]
\end{array}
$$

Hence the algorithm will correctly output "no" since $D \neq A B$.
Q: Suppose we have generated $x=[0 ; 0]$. What is y and z ? Ans: $y=[0 ; 0]$ and $z=[0 ; 0]$. In this case, $y=z$ and the algorithm will incorrectly output "yes" even though $D \neq A B$.

(Basic) Frievald's Algorithm

Let us run the algorithm on an example. Suppose we have generated $x=[1 ; 0]$.

$$
\begin{array}{r}
A=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \quad B=\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right] \quad ; \quad C=\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right] \\
B x=\left[\begin{array}{l}
1 \\
1
\end{array}\right] ; \quad y=A(B x)=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \quad ; \quad z=C x=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
\end{array}
$$

Hence the algorithm will correctly output "yes" since $C=A B$.
Q: Suppose we have generated $x=[0 ; 1]$. What is y and z ? Ans: $y=[1 ; 0]$ and $z=[1 ; 0]$. In this case again, $y=z$ and the algorithm will correctly output "yes".

(Basic) Frievald's Algorithm

Let us analyze the algorithm for general matrix multiplication.
Case (i): If $D=A B$, does the algorithm always output "yes"? Yes! Since $D=A B$, for any vector $x, D x=A B x$.

Case (ii) If $D \neq A B$, does the algorithm always output "no"?
Claim: For any input matrices A, B, D if $D \neq A B$, then the (Basic) Frievald's algorithm will output "no" with probability $\geq \frac{1}{2}$.

$$
\begin{array}{|c|c|c|}
& \text { Yes } & \text { No } \\
D=A B & 1 & 0 \\
D \neq A B & <\frac{1}{2} & \geq \frac{1}{2}
\end{array}
$$

Table 1: Probabilities for Basic Frievalds Algorithm

(Basic) Frievald's Algorithm

Proof: If $D \neq A B$, we wish to compute the probability that algorithm outputs "yes" and prove that it less than $\frac{1}{2}$.
Define $E:=(A B-D)$ and $r:=E x=(A B-D) x=y-z$. If $D \neq A B$, then $\exists(i, j)$ s.t. $E_{i, j} \neq 0$.

$$
\begin{aligned}
\operatorname{Pr}[\text { Algorithm outputs "yes" }] & =\operatorname{Pr}[y=z]=\operatorname{Pr}[r=\mathbf{0}] \\
& =\operatorname{Pr}\left[\left(r_{1}=0\right) \cap\left(r_{2}=0\right) \cap \ldots \cap\left(r_{i}=0\right) \cap \ldots\right] \\
& =\operatorname{Pr}\left[\left(r_{i}=0\right)\right] \operatorname{Pr}\left[\left(r_{1}=0\right) \cap\left(r_{2}=0\right) \cap \ldots \cap\left(r_{n}=0\right) \mid r_{i}=0\right]
\end{aligned}
$$

(By def. of conditional probability)
$\Longrightarrow \operatorname{Pr}[$ Algorithm outputs "yes" $] \leq \operatorname{Pr}\left[r_{i}=0\right]$ (Probabilities are in $[0,1]$)

To complete the proof, on the next slide, we will prove that $\operatorname{Pr}\left[r_{i}=0\right] \leq \frac{1}{2}$.

(Basic) Frievald's Algorithm

$$
\begin{array}{r}
r_{i}=\sum_{k=1}^{n} E_{i, k} x_{k}=E_{i, j} x_{j}+\sum_{k \neq j} E_{i, k} x_{k}=E_{i, j} x_{j}+\omega \quad\left(\omega:=\sum_{k \neq j} E_{i, k} x_{k}\right) \\
\operatorname{Pr}\left[r_{i}=0\right]=\operatorname{Pr}\left[r_{i}=0 \mid \omega=0\right] \operatorname{Pr}[\omega=0]+\operatorname{Pr}\left[r_{i}=0 \mid \omega \neq 0\right] \operatorname{Pr}[\omega \neq 0] \\
\text { (By the law of total probability) } \\
\operatorname{Pr}\left[r_{i}=0 \mid \omega=0\right]=\operatorname{Pr}\left[x_{j}=0\right]=\frac{1}{2} \quad \begin{array}{r}
\text { (Since } \left.E_{i, j} \neq 0 \text { and } \operatorname{Pr}\left[x_{j}=1\right]=\frac{1}{2}\right) \\
\operatorname{Pr}\left[r_{i}=0 \mid \omega \neq 0\right]=\operatorname{Pr}\left[\left(x_{j}=1\right) \cap E_{i, j}=-\omega\right]=\operatorname{Pr}\left[\left(x_{j}=1\right)\right] \operatorname{Pr}\left[E_{i, j}=-\omega \mid x_{j}=1\right]
\end{array} \\
\text { (By def. of conditional probability) } \\
\Longrightarrow \operatorname{Pr}\left[r_{i}=0 \mid \omega \neq 0\right] \leq \operatorname{Pr}\left[\left(x_{j}=1\right)\right]=\frac{1}{2} \quad \begin{array}{l}
\text { (Probabilities are in } \left.[0,1], \operatorname{Pr}\left[x_{j}=1\right]=\frac{1}{2}\right) \\
\Longrightarrow \operatorname{Pr}\left[r_{i}=0\right] \leq \frac{1}{2} \operatorname{Pr}[\omega=0]+\frac{1}{2} \operatorname{Pr}[\omega \neq 0]=\frac{1}{2} \operatorname{Pr}[\omega=0]+\frac{1}{2}[1-\operatorname{Pr}[\omega=0]]=\frac{1}{2} \\
\left(\operatorname{Pr}\left[E^{c}\right]=1-\operatorname{Pr}[E]\right)
\end{array} \\
\Longrightarrow \operatorname{Pr}[\text { Algorithm outputs "yes" }] \leq \operatorname{Pr}\left[r_{i}=0\right] \leq \frac{1}{2} .
\end{array}
$$

(Basic) Frievald's Algorithm

Hence, if $D \neq A B$, the Algorithm outputs "yes" with probability $\leq \frac{1}{2} \Longrightarrow$ the Algorithm outputs "no" with probability $\geq \frac{1}{2}$.
In the worst case, the algorithm can be incorrect half the time! We promised the algorithm would return the correct answer with "high" probability close to 1.

A common trick in randomized algorithms is to have m independent trials of an algorithm and aggregate the answer in some way, reducing the probability of error, thus amplifying the probability of success.

Questions?

