CMPT 210: Probability and Computing

Lecture 10

Sharan Vaswani
February 3, 2023

Back to throwing dice - Independent Events

Q: Suppose we throw two standard dice one after the other. What is the probability that we get
two 6's in a row?

E = We get a 6 in the second throw. F = We get a 6 in the first throw. E N F = we get two
6's in a row. We are computing Pr[E N F]. Pr[E] = Pr[F] = %.

PrlE|F] = BEA = PrE N F] = Pr{E|F] Pr[F].

Since the two dice are independent, knowing that we got a 6 in the first throw does not change
the probability that we will get a 6 in the second throw. Hence, Pr[E|F] = Pr[E] (conditioning
does not change the probability of the event).

Hence, Pr[E N F] = Pr[E|F] Pr[F] = Pr[E] PriF] = L = &.

Independent Events

Independent Events: Events E and F are said to be independent, if knowledge that F has
occurred does not change the probability that E occurs. Formally,

Pr[E|F] = Pr[E] ; Pr[ENF]=Pr[E] Pr[F]

Q: | toss two independent, fair coins. What is the probability that | get the HT sequence?

Define E to be the event that | get a heads in the first toss, and F be the event that | get a tails
in the second toss. Since the two coins are independent, events E and F are also independent.

Pr[ENF] =PrlE] PrlF] =11 =1

Q: | randomly choose a number from {1,2,...,10}. E is the event that the number | picked is a
prime. F is the event that the number | picked is odd. Are E and F independent?

PrlE] = % Pr[F] = % PrlENF] = 1%. Pr[E N F] # Pr[E] Pr[F]. Another way: Pr[E|F] = %
and Pr[E] = 2, and hence Pr[E|F] # Pr[E]. Conditioning on F tell us that prime number
cannot be 2, so it changes the probability of E.

Independent Events - Example

Q: We have a machine that has 2 independent components. The machine breaks if each of its 2
components break. Suppose each component can break with probability p, what is the
probability that the machine does not break?

Let E; = Event that the first component breaks, E, = Event that the second component breaks.
M = Event that the machine breaks = E; N E>.

Pr[M] = Pr[E; N E]. Since the two components are independent, E; and E, are independent,
meaning that Pr[E; N Ey] = Pr[E] Pr[Es] = p°.

Probability that the machine does not break = Pr[M¢] =1 — Pr[M] = 1 — p2.

Independent Events - Examples

Q: We have a new machine that has 2 independent components. The machine breaks if either of
its 2 components break. Suppose each component can break with probability p, what is the
probability that the machine breaks?

For this machine, let M’ be the event that it breaks. In this case, Pr[M’] = Pr[E; U E3].
Incorrect: By the union rule for mutually exclusive events, Pr[E; U Ex] = Pr[E1] + Pr[Ex] = 2p.

Mistake: Independence does not imply mutual exclusivity and we can not use the union rule.
Independence implies that for any two events E and F, Pr[E N F] = Pr[E] Pr[F], while mutual
exclusivity requires that Pr[E N F] = 0.

Correct way:

Pr[E1 U Ep] = Pr[E1] + Pr[Ez] — Pr[E1 N Ep] (By the inclusion-exclusion rule)
= Pr[E;] + Pr[E)] — Pr[E;] Pr[Ez] = 2p — p? (Since E; and E; are independent.)

Questions?

Matrix Multiplication

Given two n X n matrices — A and B, if C = AB, then,

Gj= Z Ai kB,
k=1

Hence, in the worst case, computing C;j is an O(n) operation. There are n? entries to fill in C
and hence, in the absence of additional structure, matrix multiplication takes O(n®) time.

There are non-trivial algorithms for doing matrix multiplication more efficiently:

o (Strassen, 1969) Requires O(n*®1) operations.
o (Coppersmith-Winograd, 1987) Requires O(n®3"®) operations.
e (Alman-Williams, 2020) Requires O(n*3"3) operations.

e Belief is that it can be done in time O(n?*<) for € > 0.

Verifying Matrix Multiplication

As an example, let us focus on A, B being binary 2 x 2 matrices.

01,3:10 1 1
10 11 10

Objective: Verify whether a matrix multiplication operation is correct.

Example: A= then C = AB =

Trivial way: Do the matrix multiplication ourselves, and verify it using O(n%) (or O(n*373))
operations.

Frievald’s Algorithm: Randomized algorithm to verify matrix multiplication with high
probability in O(n?) time.

(Basic) Frievald's Algorithm

Q: For n x n matrices A, B and D, is D = AB?

Algorithm:

1. Generate a random n-bit vector x, by making each bit x; either 0 or 1 independently with
probability % E.g, for n =2, toss a fair coin independently twice with the scheme — H is 0
and T is 1). If we get HT, then set x = [0; 1].
2. Compute t = Bx and y = At = A(Bx) and z = Dx.
3. Output “yes" if y = z (all entries need to be equal), else output “no”.
Computational complexity: Step 1 can be done in O(n) time. Step 2 requires 3 matrix vector

multiplications and can be done in O(n?) time. Step 3 requires comparing two n-dimensional
vectors and can be done in O(n) time. Hence, the total computational complexity is O(n?).

(Basic) Frievald's Algorithm

Let us run the algorithm on an example. Suppose we have generated x = [1; 0]

01 . B— 10 . p— 11

1 0 11 0 1
1 1 1

Hence the algorithm will correctly output “no” since D # AB.
Q: Suppose we have generated x = [0; 0]. What is y and z? Ans: y =[0; 0] and z = [0; 0]

A=

 z=Dx=

In this case, y = z and the algorithm will incorrectly output “yes” even though D # AB.

(Basic) Frievald's Algorithm

Let us run the algorithm on an example. Suppose we have generated x = [1; 0].

011 ;lel 0] ;C:F 11
10 11 10

BX:[ﬂ : y:A(BX):E] i z=Cx= ﬂ

Hence the algorithm will correctly output “yes” since C = AB.
Q: Suppose we have generated x = [0; 1]. What is y and z? Ans: y =[1; 0] and z = [1; 0].

A=

In this case again, y = z and the algorithm will correctly output “yes”.

(Basic) Frievald's Algorithm

Let us analyze the algorithm for general matrix multiplication.

Case (i): If D = AB, does the algorithm always output “yes"? Yes! Since D = AB, for any
vector x, Dx = ABx.

Case (ii) If D # AB, does the algorithm always output “no"?

Claim: For any input matrices A, B, D if D # AB, then the (Basic) Frievald’s algorithm will
output “no” with probability > %

Yes | No
D=AB| 1 | 0
D#AB | <1 |>3

Table 1: Probabilities for Basic Frievalds Algorithm

10

(Basic) Frievald's Algorithm

Proof: If D # AB, we wish to compute the probability that algorithm outputs “yes” and prove
that it less than %

Define E .= (AB—D) and r .= Ex = (AB—D)x =y —z. If D # AB, then 3(i,) s.t. E;j #0.

Pr[Algorithm outputs “yes"] = Pr[y = z] = Pr[r = 0]
=Prl(n=0N(r=0N...N(=0)N..]

=Pr[(r=0)]Pr[(n=0)N(r=0)N...N(r, =0)|r =0]
(By def. of conditional probability)
= Pr[Algorithm outputs "yes"] < Pr[r; = 0] (Probabilities are in [0, 1])

To complete the proof, on the next slide, we will prove that Pr[r; = 0] < %

11

(Basic) Frievald's Algorithm

=Y Euwxx=Ex+) Ewx=Ejpg+w (0= Erx)
= Py
Pr[r; = 0] = Pr[r; = OJw = 0] Pr[w = 0] + Pr[r; = O|w # 0] Pr[w # 0]
(By the law of total probability)

Pr[ri = 0lw = 0] = Pr[x; = 0] = % (Since E;; # 0 and Pr[x; = 1] = 1)
Pr[ri =0lw # 0] = Pr[(x; = 1) N E; j = —w] = Pr[(x; = 1)] Pr[E; j = —w|x; = 1]
(By def. of conditional probability)
— Prlr = 0w # 0] < Prl(y = 1)] = - (Probabilities are in [0, 1], Prj = 1] = 1)
= Pr[r,-:O]§%Pr[w:0]+%Pr[w7éO] fPr[w—O]—|— [l—Pr[w_O]]—%

(Pr[E€] =1 — Pr[E])

[y

= Pr[Algorithm outputs “yes'] < Pr[r; =0] < = b

l\)

(Basic) Frievald's Algorithm

Hence, if D # AB, the Algorithm outputs “yes” with probability < % — the Algorithm
outputs “no” with probability > 1.

In the worst case, the algorithm can be incorrect half the time! We promised the algorithm
would return the correct answer with “high” probability close to 1.

A common trick in randomized algorithms is to have m independent trials of an algorithm and
aggregate the answer in some way, reducing the probability of error, thus amplifying the
probability of success.

13

Questions?

