
CMPT 210: Probability and Computing

Lecture 10

Sharan Vaswani

February 3, 2023

Back to throwing dice - Independent Events

Q: Suppose we throw two standard dice one after the other. What is the probability that we get
two 6’s in a row?

E = We get a 6 in the second throw. F = We get a 6 in the first throw. E ∩ F = we get two
6’s in a row. We are computing Pr[E ∩ F]. Pr[E] = Pr[F] = 1

6 .

Pr[E |F] = Pr[E∩F]
Pr[F] =⇒ Pr[E ∩ F] = Pr[E |F] Pr[F].

Since the two dice are independent, knowing that we got a 6 in the first throw does not change
the probability that we will get a 6 in the second throw. Hence, Pr[E |F] = Pr[E] (conditioning
does not change the probability of the event).

Hence, Pr[E ∩ F] = Pr[E |F] Pr[F] = Pr[E] Pr[F] = 1
6

1
6 = 1

36 .

1

Independent Events

Independent Events: Events E and F are said to be independent, if knowledge that F has
occurred does not change the probability that E occurs. Formally,

Pr[E |F] = Pr[E] ; Pr[E ∩ F] = Pr[E] Pr[F]

Q: I toss two independent, fair coins. What is the probability that I get the HT sequence?

Define E to be the event that I get a heads in the first toss, and F be the event that I get a tails
in the second toss. Since the two coins are independent, events E and F are also independent.
Pr[E ∩ F] = Pr[E] Pr[F] = 1

2
1
2 = 1

4 .

Q: I randomly choose a number from {1, 2, . . . , 10}. E is the event that the number I picked is a
prime. F is the event that the number I picked is odd. Are E and F independent?

Pr[E] = 2
5 , Pr[F] = 1

2 , Pr[E ∩ F] = 3
10 . Pr[E ∩ F] ̸= Pr[E] Pr[F]. Another way: Pr[E |F] = 3

5
and Pr[E] = 2

5 , and hence Pr[E |F] ̸= Pr[E]. Conditioning on F tell us that prime number
cannot be 2, so it changes the probability of E .

2

Independent Events - Example

Q: We have a machine that has 2 independent components. The machine breaks if each of its 2
components break. Suppose each component can break with probability p, what is the
probability that the machine does not break?

Let E1 = Event that the first component breaks, E2 = Event that the second component breaks.
M = Event that the machine breaks = E1 ∩ E2.

Pr[M] = Pr[E1 ∩ E2]. Since the two components are independent, E1 and E2 are independent,
meaning that Pr [E1 ∩ E2] = Pr [E1] Pr[E2] = p2.

Probability that the machine does not break = Pr[Mc] = 1 − Pr[M] = 1 − p2.

3

Independent Events - Examples

Q: We have a new machine that has 2 independent components. The machine breaks if either of
its 2 components break. Suppose each component can break with probability p, what is the
probability that the machine breaks?

For this machine, let M ′ be the event that it breaks. In this case, Pr[M ′] = Pr[E1 ∪ E2].

Incorrect: By the union rule for mutually exclusive events, Pr[E1 ∪ E2] = Pr[E1] + Pr[E2] = 2p.

Mistake: Independence does not imply mutual exclusivity and we can not use the union rule.
Independence implies that for any two events E and F , Pr[E ∩ F] = Pr[E] Pr[F], while mutual
exclusivity requires that Pr[E ∩ F] = 0.

Correct way:

Pr[E1 ∪ E2] = Pr[E1] + Pr[E2]− Pr[E1 ∩ E2] (By the inclusion-exclusion rule)

= Pr[E1] + Pr[E2]− Pr[E1] Pr[E2] = 2p − p2 (Since E1 and E2 are independent.)

4

Questions?

4

Matrix Multiplication

Given two n × n matrices – A and B, if C = AB, then,

Ci,j =
n∑

k=1

Ai,kBk,j

Hence, in the worst case, computing Ci,j is an O(n) operation. There are n2 entries to fill in C

and hence, in the absence of additional structure, matrix multiplication takes O(n3) time.

There are non-trivial algorithms for doing matrix multiplication more efficiently:

(Strassen, 1969) Requires O(n2.81) operations.

(Coppersmith-Winograd, 1987) Requires O(n2.376) operations.

(Alman-Williams, 2020) Requires O(n2.373) operations.

Belief is that it can be done in time O(n2+ϵ) for ϵ > 0.

5

Verifying Matrix Multiplication

As an example, let us focus on A, B being binary 2 × 2 matrices.

Example: A =

[
0 1
1 0

]
, B =

[
1 0
1 1

]
then C = AB =

[
1 1
1 0

]
Objective: Verify whether a matrix multiplication operation is correct.

Trivial way: Do the matrix multiplication ourselves, and verify it using O(n3) (or O(n2.373))
operations.

Frievald’s Algorithm: Randomized algorithm to verify matrix multiplication with high
probability in O(n2) time.

6

(Basic) Frievald’s Algorithm

Q: For n × n matrices A, B and D, is D = AB?

Algorithm:

1. Generate a random n-bit vector x , by making each bit xi either 0 or 1 independently with
probability 1

2 . E.g, for n = 2, toss a fair coin independently twice with the scheme – H is 0
and T is 1). If we get HT , then set x = [0 ; 1].

2. Compute t = Bx and y = At = A(Bx) and z = Dx .

3. Output “yes” if y = z (all entries need to be equal), else output “no”.

Computational complexity: Step 1 can be done in O(n) time. Step 2 requires 3 matrix vector
multiplications and can be done in O(n2) time. Step 3 requires comparing two n-dimensional
vectors and can be done in O(n) time. Hence, the total computational complexity is O(n2).

7

(Basic) Frievald’s Algorithm

Let us run the algorithm on an example. Suppose we have generated x = [1 ; 0]

A =

[
0 1
1 0

]
; B =

[
1 0
1 1

]
; D =

[
1 1
0 1

]

Bx =

[
1
1

]
; y = A (Bx) =

[
1
1

]
; z = Dx =

[
1
0

]

Hence the algorithm will correctly output “no” since D ̸= AB.

Q: Suppose we have generated x = [0 ; 0]. What is y and z? Ans: y = [0 ; 0] and z = [0 ; 0].

In this case, y = z and the algorithm will incorrectly output “yes” even though D ̸= AB.

8

(Basic) Frievald’s Algorithm

Let us run the algorithm on an example. Suppose we have generated x = [1 ; 0].

A =

[
0 1
1 0

]
; B =

[
1 0
1 1

]
; C =

[
1 1
1 0

]

Bx =

[
1
1

]
; y = A (Bx) =

[
1
1

]
; z = Cx =

[
1
1

]

Hence the algorithm will correctly output “yes” since C = AB.

Q: Suppose we have generated x = [0 ; 1]. What is y and z? Ans: y = [1 ; 0] and z = [1 ; 0].

In this case again, y = z and the algorithm will correctly output “yes”.

9

(Basic) Frievald’s Algorithm

Let us analyze the algorithm for general matrix multiplication.

Case (i): If D = AB, does the algorithm always output “yes”? Yes! Since D = AB, for any
vector x , Dx = ABx .

Case (ii) If D ̸= AB, does the algorithm always output “no”?

Claim: For any input matrices A,B,D if D ̸= AB, then the (Basic) Frievald’s algorithm will
output “no” with probability ≥ 1

2 .

Yes No
D = AB 1 0
D ̸= AB < 1

2 ≥ 1
2

Table 1: Probabilities for Basic Frievalds Algorithm

10

(Basic) Frievald’s Algorithm

Proof : If D ̸= AB, we wish to compute the probability that algorithm outputs “yes” and prove
that it less than 1

2 .
Define E := (AB −D) and r := Ex = (AB −D)x = y − z . If D ̸= AB , then ∃(i , j) s.t. Ei,j ̸= 0.

Pr[Algorithm outputs “yes”] = Pr[y = z] = Pr[r = 0]

= Pr[(r1 = 0) ∩ (r2 = 0) ∩ . . . ∩ (ri = 0) ∩ . . .]

= Pr[(ri = 0)] Pr[(r1 = 0) ∩ (r2 = 0) ∩ . . . ∩ (rn = 0)|ri = 0]
(By def. of conditional probability)

=⇒ Pr[Algorithm outputs “yes”] ≤ Pr[ri = 0] (Probabilities are in [0, 1])

To complete the proof, on the next slide, we will prove that Pr[ri = 0] ≤ 1
2 .

11

(Basic) Frievald’s Algorithm

ri =
n∑

k=1

Ei,kxk = Ei,jxj +
∑
k ̸=j

Ei,kxk = Ei,jxj + ω (ω :=
∑

k ̸=j Ei,kxk)

Pr[ri = 0] = Pr[ri = 0|ω = 0] Pr[ω = 0] + Pr[ri = 0|ω ̸= 0] Pr[ω ̸= 0]
(By the law of total probability)

Pr[ri = 0|ω = 0] = Pr[xj = 0] =
1
2

(Since Ei,j ̸= 0 and Pr[xj = 1] = 1
2)

Pr[ri = 0|ω ̸= 0] = Pr[(xj = 1) ∩ Ei,j = −ω] = Pr[(xj = 1)] Pr[Ei,j = −ω|xj = 1]
(By def. of conditional probability)

=⇒ Pr[ri = 0|ω ̸= 0] ≤ Pr[(xj = 1)] =
1
2

(Probabilities are in [0, 1], Pr[xj = 1] = 1
2)

=⇒ Pr[ri = 0] ≤ 1
2
Pr[ω = 0] +

1
2
Pr[ω ̸= 0] =

1
2
Pr[ω = 0] +

1
2
[1 − Pr[ω = 0]] =

1
2

(Pr[E c] = 1 − Pr[E])

=⇒ Pr[Algorithm outputs “yes”] ≤ Pr[ri = 0] ≤ 1
2
.

12

(Basic) Frievald’s Algorithm

Hence, if D ̸= AB, the Algorithm outputs “yes” with probability ≤ 1
2 =⇒ the Algorithm

outputs “no” with probability ≥ 1
2 .

In the worst case, the algorithm can be incorrect half the time! We promised the algorithm
would return the correct answer with “high” probability close to 1.

A common trick in randomized algorithms is to have m independent trials of an algorithm and
aggregate the answer in some way, reducing the probability of error, thus amplifying the
probability of success.

13

Questions?

13

