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Course Information

Instructor: Sharan Vaswani (TASC-1 8221) Email: sharan_vaswani@sfu.ca

Office Hours: Thursday 2.30 pm - 3.30 pm (TASC-1 8221)

Teaching Assistant: Anh Dang. Email: anh_dang@sfu.ca

Tutorials: (From 16 Jan) Monday (1:30 pm - 2:20 pm, 3.30 pm - 4.20 pm) in BLU 10921

Course Webpage: https://vaswanis.github.io/210-W23

Piazza: https://piazza.com/sfu.ca/spring2023/cmpt210/home

Prerequisites: MACM 101, MATH 152 and MATH 232/MATH 240
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Course Information

Objective: Introduce the foundational concepts in probability required by computing.

Syllabus:

Combinatorics: Permutations, Binomial coefficients, Inclusion-Exclusion
Probability theory: Independence, Conditional probability, Bayes’ Theorem
Probability theory: Random variables, Expectation, Variance
Discrete distributions: Bernoulli, Binomial and Geometric, Joint distributions
Tail inequalities: Markov’s Inequality, Chebyshev’s Inequality, Chernoff Bound
Applications: Verifying matrix multiplication, Max-Cut, Machine Learning, Randomized
QuickSort, AB Testing
Continuous distributions (Introduction): Normal Distribution, Central Limit Theorem

Primary Resources:

Mathematics for Computer Science (Meyer, Lehman, Leighton):
https://people.csail.mit.edu/meyer/mcs.pdf
Introduction to Probability and Statistics for Engineers and Scientists (Ross). 2
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Course Information

Grading:

5 Assignments (5 × 10% = 50%)

1 Mid-Term (1 × 15% = 15%) (17 February)

1 Final Exam (1 × 35% = 35%) (TBD)

Each assignment is due in 1 week (on Fridays).

For some flexibility, each student is allowed 1 late-submission and can submit the
assignment in the tutorial session (the Monday after).

Solutions will be released on Monday evenings after the tutorial, and no late submissions are
allowed after that.

If you miss the mid-term (for a well-justified reason), will reassign weight to the final.

If you miss the final, there will be a make-up exam.
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Questions?
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Sets

Informal definition: Unordered collection of objects (referred to as elements)

Examples: {a, b, c}, {{a, b}, {c , a}}, {1.2, 2.5}, {yellow, red, green},
{x |x is capital of a North American country}, {x |x is an integer in [5, 10]}.

There is no notion of an element appearing twice. E.g. {a, a, b} = {a, b}.

The order of the elements does not matter. E.g. A = {a, b} = {b, a}.

C = {x |x is a color of the rainbow }

Elements of C : red, orange, yellow, green, blue, indigo, violet.

Membership: red ∈ C , brown /∈ C .

Cardinality: Number of elements in the set. |C | = 7

Q: A = {x |5 < x < 17 and x is a power of 2 }. Enumerate A. What is |A|?

Ans: A = {8, 16}, |A| = 2
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Common Sets

∅: Empty Set
N: Set of nonnegative integers {0, 1, 2 . . .}
Z: Set of integers {−2,−1, 0, 1, 2 . . .}
Q: Set of rational numbers that can be expressed as p/q where p, q ∈ Z and q ̸= 0.
{−10.1,−1.2, 0, 5.5, 15 . . .}
R: Set of real numbers {e, π,

√
2, 2, 5.4}

C: Set of complex numbers {2 + 5i ,−i , 1, 23.3,
√

2}

Comparing sets: A is a subset of B (A ⊆ B) iff every element of A is an element of B. E.g.
A = {a, b} and B = {a, b, c}, then A ⊆ B. Every set is a subset of itself i.e. A ⊆ A.

A is a proper subset of B (A ⊂ B) iff A is a subset of B, and A is not equal to B,

Q: Is {1, 4, 2} ⊂ {2, 4, 1}. Is {1, 4, 2} ⊆ {2, 4, 1} Ans: No, Yes
Q: Is N ⊂ Z? Is C ⊂ R? Ans: Yes, No
Q: What is |∅|? Ans: 0
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Set Operations

Union: The union of sets A and B consists of elements appearing in A OR B. If A = {1, 2, 3}
and B = {3, 4, 5}, then A ∪ B = {1, 2, 3, 4, 5}.

Intersection: The intersection of sets A and B consists of elements that appear in both A AND
B. If A = {1, 2, 3} and B = {3, 4, 5}, then A ∩ B = {3}.
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Set Operations

Set difference: The set difference of A and B consists of all elements that are in A, but not in
B. A = {1, 2, 3} and B = {3, 4, 5}, then A\B = A− B = {1, 2}. B\A = B − A = {4, 5}.

Complement: Given a domain (or universe) D such that A ⊂ D, the complement of A consists
of all elements that are not in A. D = N, A = {1, 2, 3}. A ⊂ D and Ā = {0, 4, 5, 6, . . .}.

A ∪ Ā = D, A ∩ Ā = ∅, A\Ā = A.

Q: D = N, A = {1, 2, 3} and B = {3, 4, 5}. Compute A ∩ B, (B\A) ∪ (A\B).

Ans: A ∩ B = {0, 1, 2, 4, 5, . . .}, (B\A) ∪ (A\B) = {1, 2, 4, 5}

Power set of A is the set of all subsets of A. If A = {a, b, c}, then
Pow(A) = {∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}}.
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Set operations and relations

Disjoint sets: Two sets are disjoint iff A ∩ B = ∅.

Symmetric Difference: A∆B is the set that contains those elements that are either in A or in
B, but not in both.

Q: Show A∆B on a Venn diagram. For A = {1, 2, 3} and B = {3, 4, 5}, compute A∆B.

Ans: A∆B = {1, 2, 4, 5}

Cartesian product of sets is a set consisting of ordered pairs (tuples), i.e.
A× B = {(a, b) s.t. a ∈ A, b ∈ B}. If A = {1, 2, 3} and B = {3, 4, 5}.
A× B = {(1, 3), (1, 4), (1, 5), (2, 3), (2, 4), (2, 5), (3, 3), (3, 4), (3, 5)}.

If sets are 1-dimensional objects, Cartesian product of 2 sets can be thought of as 2-dimensional.

Q. Is A× B = B × A? Ans: No. The order matters

In general, A1 × A2 × . . .× Ak = {(a1, a2, . . . , ak)|a1 ∈ A1, a2 ∈ A2, . . . , ak ∈ Ak} where
(a1, a2, . . . , ak) is referred to as a k-tuple.
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Laws of Set Theory

Distributive Law: A ∩ (B ∪ C ) = (A ∩ B) ∪ (A ∩ C )

z ∈ A ∩ (B ∪ C )

iff z ∈ A AND z ∈ (B ∪ C )

iff z ∈ A AND (z ∈ B OR z ∈ C )
Use the distributivity of AND over OR, for binary literals w , x , y ∈ {0, 1}, x AND (y OR w) =
(x AND y) OR (x AND w). For x := z ∈ A, y := z ∈ B, w := z ∈ C ,

iff (z ∈ A AND z ∈ B) OR (z ∈ A AND z ∈ C )
iff z ∈ (A ∩ B) OR z ∈ (A ∩ C )
iff z ∈ (A ∩ B) ∪ (A ∩ C )
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Questions?
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Functions

A function assigns an element of one set, called the domain, to an element of another set, called
the codomain s.t. for every element in the domain, there is at most one element in the codomain.

If A is the domain and B is the codomain of function f , then f : A → B.

If a ∈ A, and b ∈ B, and f (a) = b, we say the function f maps a to b, b is the value of f at
argument a, b is the image of a, a is the preimage of b.

A = {a, b, c , . . . z}, B = {1, 2, 3, . . . 26}, then we can define a function f : A → B such that
f (a) = 1, f (b) = 2. f thus assigns a number to each letter in the alphabet.

Consider f : R → R s.t. for x ∈ R, f (x) = x2. f (2.5) = 6.25 ∈ R.

A function cannot assign different elements in the codomain to the same element in the domain.
For example, if f (a) = 1 and f (a) = 2, the f is not a function.
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Functions

A function that assigns a value to every element in the domain is called a total function, while
one that does not necessarily do so is called a partial function.

For x ∈ R, f (x) = 1/x2 is a partial function because no value is assigned to x = 0, since 1/0 is
undefined.

Q: Consider f : R+ → R such that f (x) = x . Is f a function? Ans: Yes

Q: For x ∈ [−1, 1], y ∈ R, consider g(x) = y s.t. x2 + y2 = 1. Is g a function? Ans: No

Q: For x ∈ {−1, 1}, y ∈ R, consider g(x) = y s.t. x2 + y2 = 1. Is g a function? Ans: Yes
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Functions

We can also define a function with a set as the argument. For a set S ∈ D,
f (S) := {x | ∀s ∈ S , x = f (s)}.

A = {a, b, c , . . . z}, B = {1, 2, 3, . . . 26}. f : A → B such that f (a) = 1, f (b) = 2, . . ..
f ({e, f , z}) = {5, 6, 26}.

If D is the domain of f , then range(f ) := f (D) = f (domain(f )).

Q: If f : N → R, and f (x) = x2. What is the domain and codomain of f ? What is the range?

Ans: N, R, {0, 1, 4, 9, . . .}

Q: Consider f : {0, 1}5 → N s.t. f (x) counts the length of a left to right search of the bits in
the binary string x until a 1 appears. f (01000) = 2.

What is f (00001), f (00000)? Is f a total function? Ans: 5, undefined, No
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Surjective Functions

Surjective functions: f : A → B is a surjective function iff for every b ∈ B, there exists an
a ∈ A s.t. f (a) = b. f : R → R such that f (x) = x + 1 is a surjective function.

For surjective functions, |#arrows| ≥ |B|.

Since each element of A is assigned at most one value, and some need not be assigned a value at
all, |#arrows| ≤ |A|.

Hence, if f is a surjective function, then |A| ≥ |B|.

A = {a, b, c , . . . z , α, β, γ, . . .}, B = {1, 2, 3, . . . 26}. f : A → B such that f (a) = 1,
f (b) = 2, . . .. f does not assign any value to the Greek letters. For every number in B , there is a
letter in A. Hence, f is surjective, and |A| > |B|.
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Injective & Bijective Functions

Injective functions: f : A → B is an injective function iff ∀a ∈ A, there is a unique b ∈ B s.t.
f (a) = b. If f is injective and f (a) = f (b), then it implies that a = b.

Hence, |#arrows| = |A| ≤ |B|. Hence, if f is a injective function, then |A| ≤ |B|.

A = {a, b, c , . . . z}, B = {1, 2, 3, . . . 26, 27, . . . 100}. f : A → B such that f (a) = 1,
f (b) = 2, . . .. No element in A is assigned values 27, 28, . . ., and for every letter in A, there is a
unique number in B. Hence, f is injective, and |A| < |B|.

Bijective functions: f is a bijective function iff it is both surjective and injective, implying that
|A| = |B|.

A = {a, b, c , . . . z}, B = {1, 2, 3, . . . 26}. f : A → B such that f (a) = 1, f (b) = 2, . . .. Every
element in A is assigned a unique value in B and for every element in B, there is a value in A

that is mapped to it. f is bijective, and |A| = |B|.
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Functions

Converse of the previous statements is also true.

If |A| ≥ |B|, then it’s always possible to define a surjective function f : A → B.

If |A| ≤ |B|, then it’s always possible to define a injective function f : A → B.

If |A| = |B|, then it’s always possible to define a bijective function f : A → B.

Q: Recall that the Cartesian product of two sets S = {s1, s2, . . . , sm}, T = {t1, t2, . . . , tn} is
S × T := {(s, t)|s ∈ S , t ∈ T}. Construct a bijective function f : (S × T ) → {1, . . . nm}, and
prove that |S × T | = nm.

Ans: f (s1, t1) = 1, f (s1, tn) = n, f (s2, t1) = n+ 1, and so on. f (si , tj) = n(i − 1) + j . Since f is
bijective, |S × T | = |{1, . . . nm}| = nm.
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Sequences

Examples: (a, b, a), (1,3,4), (4,3,1)

An element can appear twice. E.g. (a, a, b) ̸= (a, b).

The order of the elements does matter. E.g. (a, b) ̸= (b, a).

Q: What is the size of (1, 2, 2, 3)? What is the size of {1, 2, 2, 3}? Ans: 4, 3.

Sets and Sequences: The Cartesian product of sets S × T × U is a set consisting of all
sequences where the first component is drawn from S , the second component is drawn from T

and the third from U. S × T × U = {(s, t, u)|s ∈ S , t ∈ T , u ∈ U}.

Q: For set S = {0, 1}, S3 = S × S × S . Enumerate S3. What is |S3|?

Ans: S3 = {(0, 0, 0), (0, 0, 1) . . . (1, 1, 1)}, |S3| = 8
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Counting Sets - Example

Suppose we want to buy 10 donuts. There are 5 donut varieties – chocolate, lemon-filled, sugar,
glazed, plain. Let A be the set of ways to select the 10 donuts. Each element of A is a potential
selection. For example, 4 chocolate, 3 lemon, 0 sugar, 2 glazed and 1 plain.

Let’s map each way to a string as follows: 0000︸︷︷︸
chocolate

000︸︷︷︸
lemon

︸︷︷︸
sugar

00︸︷︷︸
glazed

0︸︷︷︸
plain

.

Lets fix the ordering – chocolate, lemon, sugar, glazed and plain, and abstract this out further to
get the sequence: 0000 1 000 1 1 00 1 0.

Hence, each way of choosing donuts is mapped to a binary sequence of length 14 with exactly 4
ones. Now, let B be all 14-bit sequences with exactly 4 ones. An element of B is
11110000000000.

Q: The above sequence corresponds to what donut order? Ans: All plain donuts.

For every way to select donuts, we have an equivalent sequence in B. And every sequence in B

implies a unique way to select donuts. Hence, the above mapping from A → B is a bijective
function. 17


