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Logistics

Assignment 1 is marked and the marks are up on Coursys. Average = 149/170 and Median
= 157/170.

Collect your marked Assignment 1 from TASC-1 9203 between 10.30 am - 12 pm.

If you emailed your assignment for some reason, please email the TA – Yasaman for your
marked assignment.

Assignment 2 is out: https://vaswanis.github.io/210-S22/A2.pdf
Due Friday 17 June in class.

For A2, you can use your late-submission and submit on Tuesday 21 June in class.

To help you prepare for the midterm the solutions will be released on 21 June after class,
meaning that no submissions will be allowed after that.

If you have questions about either assignment or the marking, post it on Piazza:
https://piazza.com/sfu.ca/summer2022/cmpt210/home
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Conditional Probability - Recap

Recall that for events E and F such that Pr[F ] ̸= 0, Pr[E |F ] = Pr[E∩F ]
Pr[F ] .

For the complement E c ,Pr[E c |F ] = 1 − Pr[E |F ].

Proof: Since E ∪ E c = S, for an event F such that Pr[F ] ̸= 0,

(E ∪ E c) ∩ F = (E ∩ F ) ∪ (E c ∩ F ) = S ∩ F = F

=⇒ Pr[E ∩ F ] + Pr[E c ∩ F ] = Pr[F ] =⇒ Pr[E c ∩ F ]

Pr[F ]
= 1 − Pr[E ∩ F ]

Pr[F ]

=⇒ Pr[E c |F ] = 1 − Pr[E |F ]
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Generalization to multiple events

For events E1, E2, E3, Pr[E1 ∩ E2 ∩ E3] = Pr[E1] Pr[E2|E1] Pr[E3|E1 ∩ E2].

Proof: By the rule of conditional probability,

Pr[E1 ∩ E2 ∩ E3] = Pr[E1] Pr[E2 ∩ E3|E1] = Pr[E1] Pr[E2|E1] Pr[E3|E1 ∩ E2]

We can order the events to compute Pr[E1 ∩ E2 ∩ E3] more easily. For example,

Pr[E1 ∩ E2 ∩ E3] = Pr[E2] Pr[E3|E2] Pr[E1|E2 ∩ E3]
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Law of Total Probability and Bayes Rule - Recap

For events E and F such that Pr[E ] ̸= 0 and Pr[F ] ̸= 0,

Pr[F |E ] = Pr[E |F ] Pr[F ]
Pr[E ]

(Bayes Rule)

For events E and F ,

Pr[E ] = Pr[E |F ] Pr[F ] + Pr[E |F c ] Pr[F c ] (Law of total probability)

Combining the above equations,

Pr[F |E ] = Pr[E |F ] Pr[F ]
Pr[E |F ] Pr[F ] + Pr[E |F c ] Pr[F c ]
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Generalization to multiple events

For disjoint events E1, E2, E3 such that E1 ∪ E2 ∪ E3 = S and E1 ∩ E2 ∩ E3 = {} i.e. events E1,
E2 and E3 form a partition, for any event A,

A = (A ∩ E1) ∪ (A ∩ E2) ∪ (A ∩ E3) (Since E1 ∪ E2 ∪ E3 = S)

=⇒ Pr[A] = Pr[A ∩ E1] + Pr[A ∩ E2] + Pr[A ∩ E3] (By union-rule for disjoint events)

=⇒ Pr[A] = Pr[A|E1] Pr[E1] + Pr[A|E2] Pr[E2] + Pr[A|E3] Pr[E3]

(By definition of conditional probability)

Similarly, we can obtain the Bayes rule for 3 events,

Pr[E1|A] =
Pr[A|E1] Pr[E1]

Pr[A|E1] Pr[E1] + Pr[A|E2] Pr[E2] + Pr[A|E3] Pr[E3]
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Questions?
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Total Probability - Examples

Q: An insurance company believes that people can be divided into two classes — those that are
accident prone and those that are not. Their statistics show that an accident-prone person will
have an accident at some time within a fixed 1-year period with probability 0.4, whereas this
probability decreases to 0.2 for a non-accident-prone person. If we assume that 30% of the
population is accident prone, what is the probability that a new policy holder will have an
accident within a year of purchasing a policy?

Let A = event that a new policy holder will have an accident within a year of purchasing a policy.
Let B = event that the new policy holder is accident prone. We know that Pr[B] = 0.3,
Pr[A|B] = 0.4, Pr[A|Bc ] = 0.2. By the law of total probability,
Pr[A] = Pr[A|B] Pr[B] + Pr[A|Bc ] Pr[Bc ] = (0.4)(0.3) + (0.2)(0.7) = 0.26.

Q: Suppose that a new policy holder has an accident within a year of purchasing their policy.
What is the probability that they are accident prone?

Compute Pr[B|A] = Pr[A|B] Pr[B]
Pr[A] = 0.12

0.26 = 0.4615.
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Total Probability Examples

Q: At a certain stage of a criminal investigation, the inspector in charge is 60% convinced of the
guilt of a certain suspect. Suppose now that a new piece of evidence that shows that the
criminal has a certain characteristic (such as left-handedness, baldness, brown hair, etc.) is
uncovered. If 20% of the general population possesses this characteristic, how certain of the guilt
of the suspect should the inspector now be if it turns out that the suspect is among this group?

Let G be the event that the suspect is guilty. Let C be the event that the suspect possesses the
characteristic found at the crime scene. We wish to compute Pr[G |C ].

We know that Pr[G ] = 0.6, Pr[C |G ] = 1, Pr[C |G c ] = 0.2.
Pr[C ] = Pr[C |G ] Pr[G ] + Pr[C |G c ] Pr[G c ] = (1)(0.6) + (0.2)(0.4) = 0.68

Pr[G |C ] = Pr[G ] Pr[C |G ]
Pr[C ] = 0.6

0.68 = 0.882.

Hence, the additional evidence has corroborated the inspector’s theory and increased the
probability of guilt.
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Total Probability - Examples

Alice is taking a probability class and at the end of each week she can be either up-to-date or she
may have fallen behind. If she is up-to-date in a given week, the probability that she will be
up-to-date (or behind) in the next week is 0.8 (or 0.2, respectively). If she is behind in a given
week, the probability that she will be up-to-date (or behind) in the next week is 0.6 (or 0.4,
respectively). Alice is (by default) up-to-date when she starts the class. What is the probability
that she is up-to-date after three weeks?

Let Ui and Bi be the events that Alice is up-to-date or behind respectively after i weeks. Since
Alice starts the class up-to-date, Pr[U1] = 0.8 and Pr[B1] = 0.2. We also know that
Pr[U2|U1] = 0.8, Pr[U3|U2] = 0.8 and Pr[B2|U1] = 0.2, Pr[B3|U2] = 0.2. Similarly,
Pr[U2|B1] = 0.6, Pr[U3|B2] = 0.6 and Pr[B2|B1] = 0.4, Pr[B3|B2] = 0.4.

We wish to compute Pr[U3]. By the law of total probability,
Pr[U3] = Pr[U3|U2] Pr[U2] + Pr[U3|B2] Pr[B2] and
Pr[U2] = Pr[U2|U1] Pr[U1] + Pr[U2|B1] Pr[B1].

Hence, Pr[U2] = (0.8)(0.8) + (0.6)(0.2) = 0.76, and Pr[U3] = (0.8)(0.76) + (0.6)(0.24) = 0.752.
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Simpson’s Paradox

In 1973, there was a lawsuit against a university with the claim that a male candidate is more
likely to be admitted to the university than a female.

Let us consider a simplified case – there are two departments, EE and CS, and men and women
apply to the program of their choice. Let us define the following events: A is the event that the
candidate is admitted to the program of their choice, FE is the event that the candidate is a
woman applying to EE, FC is the event that the candidate is a woman applying to CS. Similarly,
we can define ME and MC . Assumption: Candidates are either men or women, and that no
candidate is allowed to be part of both EE and CS.

Lawsuit claim: Male candidate is more likely to be admitted to the university than a female i.e.
Pr[A|ME ∪MC ] > Pr[A|FE ∪ FC ].

University response: In any given department, a male applicant is less likely to be admitted
than a female i.e. Pr[A|FE ] > Pr[A|ME ] and Pr[A|FC ] > Pr[A|MC ].

Simpson’s Paradox: Both the above statements can be simultaneously true.
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Simpson’s Paradox

In the above example, Pr[A|FE ] = 0.8 > 0.7 = Pr[A|ME ] and Pr[A|FC ] = 0.5 > 0.4 = Pr[A|MC ].
Pr[A|FE ∪ FC ] ≈ 0.51. Similarly, Pr[A|ME ∪MC ] ≈ 0.69.

In general, Simpson’s Paradox occurs when multiple small groups of data all exhibit a similar
trend, but that trend reverses when those groups are aggregated.
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Questions?
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Back to throwing dice - Independent Events

Suppose we throw two standard dice one after the other. What is the probability that we get two
6’s in a row?

E = We get a 6 in the second throw. F = We get a 6 in the first throw. E ∩ F = we get two
6’s in a row. We are computing Pr[E ∩ F ]. Pr[E ] = Pr[F ] = 1

6 .

Pr[E |F ] = Pr[E∩F ]
Pr[F ] =⇒ Pr[E ∩ F ] = Pr[E |F ] Pr[F ].

Since the two dice are independent, knowing that we got a 6 in the first throw does not change
the probability that we will get a 6 in the second throw. Hence, Pr[E |F ] = Pr[E ] (conditioning
does not change the probability of the event).

Hence, Pr[E ∩ F ] = Pr[E |F ] Pr[F ] = Pr[E ] Pr[F ] = 1
6

1
6 = 1

36 .
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Independent Events

Events E and F are said to be independent, if knowledge that F has occurred does not change
the probability that E occurs. Formally,

Pr[E ∩ F ] = Pr[E ] Pr[F ]

Q: I toss two independent, fair coins. What is the probability that I get the HT sequence?

Define E to be the event that I get a heads in the first toss, and F be the event that I get a tails
in the second toss. Since the two coins are independent, events E and F are also independent.
Pr[E ∩ F ] = Pr[E ] Pr[F ] = 1

2
1
2 = 1

4 .

Q: I randomly choose a number from {1, 2, . . . , 10}. E is the event that the number I picked is a
prime. F is the event that the number I picked is odd. Are E and F independent?

Pr[E ] = 2
5 , Pr[F ] = 1

2 , Pr[E ∩ F ] = 3
10 . Pr[E ∩ F ] ̸= Pr[E ] Pr[F ]. Another way: Pr[E |F ] = 3

5
and Pr[E ] = 2

5 , and hence Pr[E |F ] ̸= Pr[E ]. Conditioning on F tell us that prime number
cannot be 2, so it changes the probability of E .
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Independent Events - Example

Q: We have a machine that has 2 independent components. The machine breaks if each of its 2
components break. Suppose each component can break with probability p, what is the
probability that the machine does not break?

Let E1 = Event that the first component breaks, E2 = Event that the second component breaks.
M = Event that the machine breaks = E1 ∩ E2.

Pr[M] = Pr[E1 ∩ E2]. Since the two components are independent, E1 and E2 are independent,
meaning that Pr [E1 ∩ E2] = Pr [E1] Pr[E2] = p2.

Probability that the machine does not break = Pr[Mc ] = 1 − Pr[M] = 1 − p2.
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Independent Events - Example

Q: We have a new machine that breaks if either of its 2 components break. Suppose each
component can break with probability p, what is the probability that the machine breaks?

For this machine, let M ′ be the event that it breaks. In this case, Pr[M ′] = Pr[E1 ∪ E2].

Incorrect: By the union rule for mutually exclusive events, Pr[E1 ∪ E2] = Pr[E1] + Pr[E2] = 2p.

Mistake: Independence does not imply mutual exclusivity and we can not use the union rule for
mutually exclusive events. Independence implies that for any two events E and F ,
Pr[E ∩ F ] = Pr[E ] Pr[F ], while mutual exclusivity requires that Pr[E ∩ F ] = 0.

Correct way 1:

Pr[E1 ∪ E2] = Pr[E1] + Pr[E2]− Pr[E1 ∩ E2] (By the union rule)

= Pr[E1] + Pr[E2]− Pr[E1] Pr[E2] = 2p − p2 (Since E1 and E2 are independent.)
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Independent Events - Example

Q: We have a new machine that breaks if either of its 2 components break. Suppose each
component can break with probability p, what is the probability that the machine breaks?

Correct way 2:

Pr[E1 ∪ E2] = 1 − Pr[(E1 ∪ E2)
c ] = 1 − Pr[(E c

1 ∩ E c
2 ]

(Complement of union of sets is equal to the intersection of the complements of sets)

= 1 − Pr[E c
1 ] Pr[E

c
2 ] = 1 − (1 − p)2 = 2p − p2

(If E1 and E2 are independent, so are E c
1 and E c

2 (Proof on the next slide))

This implies that for the first machine, the probability of failure is p2 while for the second one, it
is 2p − p2. Since p ≤ 1, p2 ≤ 2p − p2, meaning that the first machine fails less often.
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Independent Events - Example

Q: Prove that if E1 and E2 are independent, so are E c
1 and E c

2

Pr[(E1)
c ∩ (E2)

c ] = Pr[(E1 ∪ E2)
c ] = 1 − Pr[E1 ∪ E2] = 1 − Pr[E1]− Pr[E2] + Pr[E1 ∩ E2]

(By the union rule)

= 1 − Pr[E1]− Pr[E2] + Pr[E1] Pr[E2] (Since E1 and E2 are independent)

= (1 − Pr[E1]) (1 − Pr[E2]) = Pr[E c
1 ] Pr[E

c
2 ]
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