CMPT 210: Probability and Computation

Lecture 9

Sharan Vaswani
June 7, 2022

Logistics

- Assignment 1 is marked and the marks are up on Coursys. Average $=149 / 170$ and Median $=157 / 170$.
- Collect your marked Assignment 1 from TASC-1 9203 between $10.30 \mathrm{am}-12 \mathrm{pm}$.
- If you emailed your assignment for some reason, please email the TA - Yasaman for your marked assignment.
- Assignment 2 is out: https://vaswanis.github.io/210-S22/A2.pdf Due Friday 17 June in class.
- For A2, you can use your late-submission and submit on Tuesday 21 June in class.
- To help you prepare for the midterm the solutions will be released on 21 June after class, meaning that no submissions will be allowed after that.
- If you have questions about either assignment or the marking, post it on Piazza: https://piazza.com/sfu.ca/summer2022/cmpt210/home

Conditional Probability - Recap

Recall that for events E and F such that $\operatorname{Pr}[F] \neq 0, \operatorname{Pr}[E \mid F]=\frac{\operatorname{Pr}[E \cap F]}{\operatorname{Pr}[F]}$.
For the complement $E^{c}, \operatorname{Pr}\left[E^{c} \mid F\right]=1-\operatorname{Pr}[E \mid F]$.

Proof: Since $E \cup E^{c}=\mathcal{S}$, for an event F such that $\operatorname{Pr}[F] \neq 0$,

$$
\begin{gathered}
\left(E \cup E^{c}\right) \cap F=(E \cap F) \cup\left(E^{c} \cap F\right)=\mathcal{S} \cap F=F \\
\Longrightarrow \operatorname{Pr}[E \cap F]+\operatorname{Pr}\left[E^{c} \cap F\right]=\operatorname{Pr}[F] \Longrightarrow \frac{\operatorname{Pr}\left[E^{c} \cap F\right]}{\operatorname{Pr}[F]}=1-\frac{\operatorname{Pr}[E \cap F]}{\operatorname{Pr}[F]} \\
\Longrightarrow \operatorname{Pr}\left[E^{c} \mid F\right]=1-\operatorname{Pr}[E \mid F]
\end{gathered}
$$

Generalization to multiple events

For events $E_{1}, E_{2}, E_{3}, \operatorname{Pr}\left[E_{1} \cap E_{2} \cap E_{3}\right]=\operatorname{Pr}\left[E_{1}\right] \operatorname{Pr}\left[E_{2} \mid E_{1}\right] \operatorname{Pr}\left[E_{3} \mid E_{1} \cap E_{2}\right]$.

Proof: By the rule of conditional probability,

$$
\operatorname{Pr}\left[E_{1} \cap E_{2} \cap E_{3}\right]=\operatorname{Pr}\left[E_{1}\right] \operatorname{Pr}\left[E_{2} \cap E_{3} \mid E_{1}\right]=\operatorname{Pr}\left[E_{1}\right] \operatorname{Pr}\left[E_{2} \mid E_{1}\right] \operatorname{Pr}\left[E_{3} \mid E_{1} \cap E_{2}\right]
$$

We can order the events to compute $\operatorname{Pr}\left[E_{1} \cap E_{2} \cap E_{3}\right]$ more easily. For example,

$$
\operatorname{Pr}\left[E_{1} \cap E_{2} \cap E_{3}\right]=\operatorname{Pr}\left[E_{2}\right] \operatorname{Pr}\left[E_{3} \mid E_{2}\right] \operatorname{Pr}\left[E_{1} \mid E_{2} \cap E_{3}\right]
$$

Law of Total Probability and Bayes Rule - Recap

For events E and F such that $\operatorname{Pr}[E] \neq 0$ and $\operatorname{Pr}[F] \neq 0$,

$$
\begin{equation*}
\operatorname{Pr}[F \mid E]=\frac{\operatorname{Pr}[E \mid F] \operatorname{Pr}[F]}{\operatorname{Pr}[E]} \tag{BayesRule}
\end{equation*}
$$

For events E and F,

$$
\operatorname{Pr}[E]=\operatorname{Pr}[E \mid F] \operatorname{Pr}[F]+\operatorname{Pr}\left[E \mid F^{c}\right] \operatorname{Pr}\left[F^{c}\right]
$$

(Law of total probability)
Combining the above equations,

$$
\operatorname{Pr}[F \mid E]=\frac{\operatorname{Pr}[E \mid F] \operatorname{Pr}[F]}{\operatorname{Pr}[E \mid F] \operatorname{Pr}[F]+\operatorname{Pr}\left[E \mid F^{c}\right] \operatorname{Pr}\left[F^{c}\right]}
$$

Generalization to multiple events

For disjoint events E_{1}, E_{2}, E_{3} such that $E_{1} \cup E_{2} \cup E_{3}=\mathcal{S}$ and $E_{1} \cap E_{2} \cap E_{3}=\{ \}$ i.e. events E_{1}, E_{2} and E_{3} form a partition, for any event A,

$$
\begin{array}{rlr}
A & \left.=\left(A \cap E_{1}\right) \cup\left(A \cap E_{2}\right) \cup\left(A \cap E_{3}\right) \quad \text { (Since } E_{1} \cup E_{2} \cup E_{3}=\mathcal{S}\right) \\
\Longrightarrow \operatorname{Pr}[A] & =\operatorname{Pr}\left[A \cap E_{1}\right]+\operatorname{Pr}\left[A \cap E_{2}\right]+\operatorname{Pr}\left[A \cap E_{3}\right] \quad \text { (By union-rule for disjoint events) } \\
\Longrightarrow \operatorname{Pr}[A] & =\operatorname{Pr}\left[A \mid E_{1}\right] \operatorname{Pr}\left[E_{1}\right]+\operatorname{Pr}\left[A \mid E_{2}\right] \operatorname{Pr}\left[E_{2}\right]+\operatorname{Pr}\left[A \mid E_{3}\right] \operatorname{Pr}\left[E_{3}\right] \\
& \text { (By definition of conditional probability) }
\end{array}
$$

Similarly, we can obtain the Bayes rule for 3 events,

$$
\operatorname{Pr}\left[E_{1} \mid A\right]=\frac{\operatorname{Pr}\left[A \mid E_{1}\right] \operatorname{Pr}\left[E_{1}\right]}{\operatorname{Pr}\left[A \mid E_{1}\right] \operatorname{Pr}\left[E_{1}\right]+\operatorname{Pr}\left[A \mid E_{2}\right] \operatorname{Pr}\left[E_{2}\right]+\operatorname{Pr}\left[A \mid E_{3}\right] \operatorname{Pr}\left[E_{3}\right]}
$$

Questions?

Total Probability - Examples

Q: An insurance company believes that people can be divided into two classes - those that are accident prone and those that are not. Their statistics show that an accident-prone person will have an accident at some time within a fixed 1 -year period with probability 0.4 , whereas this probability decreases to 0.2 for a non-accident-prone person. If we assume that 30% of the population is accident prone, what is the probability that a new policy holder will have an accident within a year of purchasing a policy?
Let $A=$ event that a new policy holder will have an accident within a year of purchasing a policy.
Let $B=$ event that the new policy holder is accident prone. We know that $\operatorname{Pr}[B]=0.3$,
$\operatorname{Pr}[A \mid B]=0.4, \operatorname{Pr}\left[A \mid B^{c}\right]=0.2$. By the law of total probability,
$\operatorname{Pr}[A]=\operatorname{Pr}[A \mid B] \operatorname{Pr}[B]+\operatorname{Pr}\left[A \mid B^{c}\right] \operatorname{Pr}\left[B^{c}\right]=(0.4)(0.3)+(0.2)(0.7)=0.26$.
Q: Suppose that a new policy holder has an accident within a year of purchasing their policy. What is the probability that they are accident prone?
Compute $\operatorname{Pr}[B \mid A]=\frac{\operatorname{Pr}[A \mid B] \operatorname{Pr}[B]}{\operatorname{Pr}[A]}=\frac{0.12}{0.26}=0.4615$.

Total Probability Examples

Q: At a certain stage of a criminal investigation, the inspector in charge is 60% convinced of the guilt of a certain suspect. Suppose now that a new piece of evidence that shows that the criminal has a certain characteristic (such as left-handedness, baldness, brown hair, etc.) is uncovered. If 20% of the general population possesses this characteristic, how certain of the guilt of the suspect should the inspector now be if it turns out that the suspect is among this group? Let G be the event that the suspect is guilty. Let C be the event that the suspect possesses the characteristic found at the crime scene. We wish to compute $\operatorname{Pr}[G \mid C]$.

We know that $\operatorname{Pr}[G]=0.6, \operatorname{Pr}[C \mid G]=1, \operatorname{Pr}\left[C \mid G^{c}\right]=0.2$.
$\operatorname{Pr}[C]=\operatorname{Pr}[C \mid G] \operatorname{Pr}[G]+\operatorname{Pr}\left[C \mid G^{c}\right] \operatorname{Pr}\left[G^{c}\right]=(1)(0.6)+(0.2)(0.4)=0.68$
$\operatorname{Pr}[G \mid C]=\frac{\operatorname{Pr}[G] \operatorname{Pr}[C \mid G]}{\operatorname{Pr}[C]}=\frac{0.6}{0.68}=0.882$.
Hence, the additional evidence has corroborated the inspector's theory and increased the probability of guilt.

Total Probability - Examples

Alice is taking a probability class and at the end of each week she can be either up-to-date or she may have fallen behind. If she is up-to-date in a given week, the probability that she will be up-to-date (or behind) in the next week is 0.8 (or 0.2 , respectively). If she is behind in a given week, the probability that she will be up-to-date (or behind) in the next week is 0.6 (or 0.4, respectively). Alice is (by default) up-to-date when she starts the class. What is the probability that she is up-to-date after three weeks?

Let U_{i} and B_{i} be the events that Alice is up-to-date or behind respectively after i weeks. Since Alice starts the class up-to-date, $\operatorname{Pr}\left[U_{1}\right]=0.8$ and $\operatorname{Pr}\left[B_{1}\right]=0.2$. We also know that $\operatorname{Pr}\left[U_{2} \mid U_{1}\right]=0.8, \operatorname{Pr}\left[U_{3} \mid U_{2}\right]=0.8$ and $\operatorname{Pr}\left[B_{2} \mid U_{1}\right]=0.2, \operatorname{Pr}\left[B_{3} \mid U_{2}\right]=0.2$. Similarly, $\operatorname{Pr}\left[U_{2} \mid B_{1}\right]=0.6, \operatorname{Pr}\left[U_{3} \mid B_{2}\right]=0.6$ and $\operatorname{Pr}\left[B_{2} \mid B_{1}\right]=0.4, \operatorname{Pr}\left[B_{3} \mid B_{2}\right]=0.4$.
We wish to compute $\operatorname{Pr}\left[U_{3}\right]$. By the law of total probability,
$\operatorname{Pr}\left[U_{3}\right]=\operatorname{Pr}\left[U_{3} \mid U_{2}\right] \operatorname{Pr}\left[U_{2}\right]+\operatorname{Pr}\left[U_{3} \mid B_{2}\right] \operatorname{Pr}\left[B_{2}\right]$ and
$\operatorname{Pr}\left[U_{2}\right]=\operatorname{Pr}\left[U_{2} \mid U_{1}\right] \operatorname{Pr}\left[U_{1}\right]+\operatorname{Pr}\left[U_{2} \mid B_{1}\right] \operatorname{Pr}\left[B_{1}\right]$.
Hence, $\operatorname{Pr}\left[U_{2}\right]=(0.8)(0.8)+(0.6)(0.2)=0.76$, and $\operatorname{Pr}\left[U_{3}\right]=(0.8)(0.76)+(0.6)(0.24)=0.752$.

Simpson's Paradox

In 1973, there was a lawsuit against a university with the claim that a male candidate is more likely to be admitted to the university than a female.

Let us consider a simplified case - there are two departments, EE and CS, and men and women apply to the program of their choice. Let us define the following events: A is the event that the candidate is admitted to the program of their choice, F_{E} is the event that the candidate is a woman applying to EE, F_{C} is the event that the candidate is a woman applying to CS. Similarly, we can define M_{E} and M_{C}. Assumption: Candidates are either men or women, and that no candidate is allowed to be part of both EE and CS.

Lawsuit claim: Male candidate is more likely to be admitted to the university than a female i.e. $\operatorname{Pr}\left[A \mid M_{E} \cup M_{C}\right]>\operatorname{Pr}\left[A \mid F_{E} \cup F_{C}\right]$.

University response: In any given department, a male applicant is less likely to be admitted than a female i.e. $\operatorname{Pr}\left[A \mid F_{E}\right]>\operatorname{Pr}\left[A \mid M_{E}\right]$ and $\operatorname{Pr}\left[A \mid F_{C}\right]>\operatorname{Pr}\left[A \mid M_{C}\right]$.
Simpson's Paradox: Both the above statements can be simultaneously true.

Simpson's Paradox

CS	2 men admitted out of 5 candidates	40%
	50 women admitted out of 100 candidates	50%
EE	70 men admitted out of 100 candidates	70%
	4 women admitted out of 5 candidates	80%
Overall	72 men admitted, 105 candidates	$\approx 69 \%$
	54 women admitted, 105 candidates	$\approx 51 \%$

In the above example, $\operatorname{Pr}\left[A \mid F_{E}\right]=0.8>0.7=\operatorname{Pr}\left[A \mid M_{E}\right]$ and $\operatorname{Pr}\left[A \mid F_{C}\right]=0.5>0.4=\operatorname{Pr}\left[A \mid M_{C}\right]$. $\operatorname{Pr}\left[A \mid F_{E} \cup F_{C}\right] \approx 0.51$. Similarly, $\operatorname{Pr}\left[A \mid M_{E} \cup M_{C}\right] \approx 0.69$.

In general, Simpson's Paradox occurs when multiple small groups of data all exhibit a similar trend, but that trend reverses when those groups are aggregated.

Questions?

Back to throwing dice - Independent Events

Suppose we throw two standard dice one after the other. What is the probability that we get two 6's in a row?
$E=$ We get a 6 in the second throw. $F=$ We get a 6 in the first throw. $E \cap F=$ we get two 6 's in a row. We are computing $\operatorname{Pr}[E \cap F] . \operatorname{Pr}[E]=\operatorname{Pr}[F]=\frac{1}{6}$.
$\operatorname{Pr}[E \mid F]=\frac{\operatorname{Pr}[E \cap F]}{\operatorname{Pr}[F]} \Longrightarrow \operatorname{Pr}[E \cap F]=\operatorname{Pr}[E \mid F] \operatorname{Pr}[F]$.
Since the two dice are independent, knowing that we got a 6 in the first throw does not change the probability that we will get a 6 in the second throw. Hence, $\operatorname{Pr}[E \mid F]=\operatorname{Pr}[E]$ (conditioning does not change the probability of the event).

Hence, $\operatorname{Pr}[E \cap F]=\operatorname{Pr}[E \mid F] \operatorname{Pr}[F]=\operatorname{Pr}[E] \operatorname{Pr}[F]=\frac{1}{6} \frac{1}{6}=\frac{1}{36}$.

Independent Events

Events E and F are said to be independent, if knowledge that F has occurred does not change the probability that E occurs. Formally,

$$
\operatorname{Pr}[E \cap F]=\operatorname{Pr}[E] \operatorname{Pr}[F]
$$

Q: I toss two independent, fair coins. What is the probability that I get the HT sequence?
Define E to be the event that I get a heads in the first toss, and F be the event that I get a tails in the second toss. Since the two coins are independent, events E and F are also independent. $\operatorname{Pr}[E \cap F]=\operatorname{Pr}[E] \operatorname{Pr}[F]=\frac{1}{2} \frac{1}{2}=\frac{1}{4}$.
Q: I randomly choose a number from $\{1,2, \ldots, 10\} . E$ is the event that the number I picked is a prime. F is the event that the number I picked is odd. Are E and F independent?
$\operatorname{Pr}[E]=\frac{2}{5}, \operatorname{Pr}[F]=\frac{1}{2}, \operatorname{Pr}[E \cap F]=\frac{3}{10} . \operatorname{Pr}[E \cap F] \neq \operatorname{Pr}[E] \operatorname{Pr}[F]$. Another way: $\operatorname{Pr}[E \mid F]=\frac{3}{5}$ and $\operatorname{Pr}[E]=\frac{2}{5}$, and hence $\operatorname{Pr}[E \mid F] \neq \operatorname{Pr}[E]$. Conditioning on F tell us that prime number cannot be 2 , so it changes the probability of E.

Independent Events - Example

Q: We have a machine that has 2 independent components. The machine breaks if each of its 2 components break. Suppose each component can break with probability p, what is the probability that the machine does not break?

Let $E_{1}=$ Event that the first component breaks, $E_{2}=$ Event that the second component breaks. $M=$ Event that the machine breaks $=E_{1} \cap E_{2}$.
$\operatorname{Pr}[M]=\operatorname{Pr}\left[E_{1} \cap E_{2}\right]$. Since the two components are independent, E_{1} and E_{2} are independent, meaning that $\operatorname{Pr}\left[E_{1} \cap E_{2}\right]=\operatorname{Pr}\left[E_{1}\right] \operatorname{Pr}\left[E_{2}\right]=p^{2}$.
Probability that the machine does not break $=\operatorname{Pr}\left[M^{c}\right]=1-\operatorname{Pr}[M]=1-p^{2}$.

Independent Events - Example

Q: We have a new machine that breaks if either of its 2 components break. Suppose each component can break with probability p, what is the probability that the machine breaks?
For this machine, let M^{\prime} be the event that it breaks. In this case, $\operatorname{Pr}\left[M^{\prime}\right]=\operatorname{Pr}\left[E_{1} \cup E_{2}\right]$.
Incorrect: By the union rule for mutually exclusive events, $\operatorname{Pr}\left[E_{1} \cup E_{2}\right]=\operatorname{Pr}\left[E_{1}\right]+\operatorname{Pr}\left[E_{2}\right]=2 p$.
Mistake: Independence does not imply mutual exclusivity and we can not use the union rule for mutually exclusive events. Independence implies that for any two events E and F, $\operatorname{Pr}[E \cap F]=\operatorname{Pr}[E] \operatorname{Pr}[F]$, while mutual exclusivity requires that $\operatorname{Pr}[E \cap F]=0$.

Correct way 1 :

$$
\begin{array}{rlr}
\operatorname{Pr}\left[E_{1} \cup E_{2}\right] & =\operatorname{Pr}\left[E_{1}\right]+\operatorname{Pr}\left[E_{2}\right]-\operatorname{Pr}\left[E_{1} \cap E_{2}\right] \quad \text { (By the union rule) } \\
& =\operatorname{Pr}\left[E_{1}\right]+\operatorname{Pr}\left[E_{2}\right]-\operatorname{Pr}\left[E_{1}\right] \operatorname{Pr}\left[E_{2}\right]=2 p-p^{2} \quad \text { (Since } E_{1} \text { and } E_{2} \text { are independent.) }
\end{array}
$$

Independent Events - Example

Q: We have a new machine that breaks if either of its 2 components break. Suppose each component can break with probability p, what is the probability that the machine breaks?

Correct way 2 :

$$
\operatorname{Pr}\left[E_{1} \cup E_{2}\right]=1-\operatorname{Pr}\left[\left(E_{1} \cup E_{2}\right)^{c}\right]=1-\operatorname{Pr}\left[\left(E_{1}^{c} \cap E_{2}^{c}\right]\right.
$$

(Complement of union of sets is equal to the intersection of the complements of sets)

$$
\begin{aligned}
& =1-\operatorname{Pr}\left[E_{1}^{c}\right] \operatorname{Pr}\left[E_{2}^{c}\right]=1-(1-p)^{2}=2 p-p^{2} \\
& \text { (If } E_{1} \text { and } E_{2} \text { are independent, so are } E_{1}^{c} \text { and } E_{2}^{c} \text { (Proof on the next slide)) }
\end{aligned}
$$

This implies that for the first machine, the probability of failure is p^{2} while for the second one, it is $2 p-p^{2}$. Since $p \leq 1, p^{2} \leq 2 p-p^{2}$, meaning that the first machine fails less often.

Independent Events - Example

Q: Prove that if E_{1} and E_{2} are independent, so are E_{1}^{c} and E_{2}^{c}

$$
\begin{aligned}
& \operatorname{Pr}\left[\left(E_{1}\right)^{c} \cap\left(E_{2}\right)^{c}\right]=\operatorname{Pr}\left[\left(E_{1} \cup E_{2}\right)^{c}\right]=1-\operatorname{Pr}\left[E_{1} \cup E_{2}\right]=1-\operatorname{Pr}\left[E_{1}\right]-\operatorname{Pr}\left[E_{2}\right]+\operatorname{Pr}\left[E_{1} \cap E_{2}\right] \\
& \text { (By the union rule) } \\
&=1-\operatorname{Pr}\left[E_{1}\right]-\operatorname{Pr}\left[E_{2}\right]+\operatorname{Pr}\left[E_{1}\right] \operatorname{Pr}\left[E_{2}\right] \quad \text { (Since } E_{1} \text { and } E_{2} \text { are independent) } \\
&=\left(1-\operatorname{Pr}\left[E_{1}\right]\right)\left(1-\operatorname{Pr}\left[E_{2}\right]\right)=\operatorname{Pr}\left[E_{1}^{c}\right] \operatorname{Pr}\left[E_{2}^{c}\right]
\end{aligned}
$$

