CMPT 210: Probability and Computation

Lecture 8

Sharan Vaswani
June 3, 2022

Conditional Probability - Examples

Let us play a game with three strange dice shown in the figure. Each player selects one die and rolls it once. The player with the lower value pays the other player $\$ 100$. We can pick a die first, after which the other player can pick one of the other two.

A

B

C

Q: Suppose we choose die B because it has a 9, and the other player selects die A. What is the probability that we will win?

Conditional Probability - Examples

die A die $B \quad$ winner | probability |
| :---: |
| of outcome |

Identify Outcomes: Each leaf is an outcome and $\mathcal{S}=$ $\{(2,1),(2,5),(2,9),(6,1),(6,5),(6,9),(7,1),(7,5),(7,9)\}$.

Identify Event: $E=\{(2,5),(2,9),(6,9),(7,9)\}$.
Compute probabilities: $\operatorname{Pr}[$ Dice 1 is 6$]=\frac{1}{3}$.
$\operatorname{Pr}[(6,5)]=\operatorname{Pr}[$ Dice 2 is $5 \cap$ Dice 1 is 6$]=$ $\operatorname{Pr}[$ Dice 2 is $5 \mid$ Dice 1 is 6$] \operatorname{Pr}[$ Dice 1 is 6$]=\frac{1}{3} \frac{1}{3}=\frac{1}{9}$.
$\operatorname{Pr}[E]=\operatorname{Pr}[(2,5)]+\operatorname{Pr}[(2,9)]+\operatorname{Pr}[(6,9)]+\operatorname{Pr}[(7,9)]=\frac{4}{9}$.
Meaning that there is less than 50% chance of winning.

Conditional Probability - Examples

Q: We get another chance - this time we know that die A is good (since we lost to it previously), we choose die A and the other player chooses die C . What is our probability of winning?

| die C | die A | wimner |
| :---: | :---: | :---: | :---: | :---: | :---: |
| probability
 of outcome | | |
| $1 / 9$ | | |

Conditional Probability - Examples

We get yet another chance, and this time we choose die C , because we reason that $\operatorname{die} \mathrm{A}$ is better than B, and C is better than A.
By similar reasoning, we can construct a tree diagram to show that unfortunately, the probability that we win is again $\frac{4}{9}$.
So we conclude that,

- A beats B with probability $\frac{5}{9}$ (first game).
- C beats A with probability $\frac{5}{9}$ (second game).
- B beats C with probability $\frac{5}{9}$ (third game).

Since A will beat B more often than not, and B will beat C more often than not, it seems like A ought to beat C more often than not, that is, the "beats more often" relation ought to be transitive. But this intuitive idea is false: whatever die we pick, the second player can pick one of the others and be likely to win. So picking first is actually a disadvantage!

Conditional Probability - Examples

A test for detecting cancer has the following accuracy - (i) If a person has cancer, there is a 10% chance that the test will say that the person does not have it. This is called a "false negative" and (ii) If a person does not have cancer, there is a 5% chance that the test will say that the person does have it. This is called a "false positive". For patients that have no family history of cancer, the incidence of cancer is 1%. Person X does not have any family history of cancer, but is detected to have cancer. What is the probability that the Person X does have cancer?

Conditional Probability - Examples

$\mathcal{S}=\{($ Healthy, Positive $),($ Healthy, Negative $),($ Sick, Positive $),($ Sick, Negative $)\}$.
A is the event that Person X has cancer. B is the event that the test is positive.

Questions?

Bayes Rule

For events E and F if $\operatorname{Pr}[E] \neq 0$ and $\operatorname{Pr}[F] \neq 0$, then,

$$
\begin{aligned}
\operatorname{Pr}[E \mid F] & =\frac{\operatorname{Pr}[E \cap F]}{\operatorname{Pr}[F]} ; \quad \operatorname{Pr}[F \mid E]=\frac{\operatorname{Pr}[F \cap E]}{\operatorname{Pr}[E]} \\
\Longrightarrow \operatorname{Pr}[E \cap F] & =\operatorname{Pr}[E \mid F] \operatorname{Pr}[F] \quad ; \quad \operatorname{Pr}[F \cap E]=\operatorname{Pr}[F \mid E] \operatorname{Pr}[E] \\
\Longrightarrow \operatorname{Pr}[E \mid F] \operatorname{Pr}[F] & =\operatorname{Pr}[F \mid E] \operatorname{Pr}[E] \\
\Longrightarrow \operatorname{Pr}[F \mid E] & =\frac{\operatorname{Pr}[E \mid F] \operatorname{Pr}[F]}{\operatorname{Pr}[E]}
\end{aligned}
$$

Allows us to compute $\operatorname{Pr}[F \mid E]$ using $\operatorname{Pr}[E \mid F]$. Later in the course, we will see an application of the Bayes rule to machine learning.

Law of Total Probability and Bayes rule

For events E and F,

$$
\begin{aligned}
& E=(E \cap F) \cup\left(E \cap F^{c}\right) \\
& \Longrightarrow \operatorname{Pr}[E]=\operatorname{Pr}\left[(E \cap F) \cup\left(E \cap F^{c}\right)\right]=\operatorname{Pr}[E \cap F]+\operatorname{Pr}\left[E \cap F^{c}\right] \\
& \text { (By union-rule for disjoint events) } \\
& \operatorname{Pr}[E]=\operatorname{Pr}[E \mid F] \operatorname{Pr}[F]+\operatorname{Pr}\left[E \mid F^{c}\right] \operatorname{Pr}\left[F^{c}\right] \quad \begin{array}{c}
\text { (By definition of conditional probability) }
\end{array} \\
& \operatorname{Pr}[F \mid E]=\frac{\operatorname{Pr}[F \cap E]}{\operatorname{Pr}[E]}=\frac{\operatorname{Pr}[E \mid F] \operatorname{Pr}[F]}{\operatorname{Pr}[E]} \quad \text { (By definition of conditional probability) } \\
& \operatorname{Pr}[F \mid E]=\frac{\operatorname{Pr}[E \mid F] \operatorname{Pr}[F]}{\operatorname{Pr}[E \mid F] \operatorname{Pr}[F]+\operatorname{Pr}[E \mid F] \operatorname{Pr}\left[F^{c}\right]} \quad \text { (By law of total probability) }
\end{aligned}
$$

Total Probability - Examples

Q: In answering a question on a multiple-choice test, a student either knows the answer or she guesses. Let p be the probability that she knows the answer and $1-p$ the probability that she guesses. Assume that a student who guesses at the answer will be correct with probability $\frac{1}{m}$, where m is the number of multiple-choice alternatives. What is the conditional probability that a student knew the answer to a question given that she answered it correctly?

Let C be the event that the student answers the question correctly. Let K be the event that the student knows the answer. We wish to compute $\operatorname{Pr}[K \mid C]$.

We know that $\operatorname{Pr}[K]=p$ and $\operatorname{Pr}\left[C \mid K^{c}\right]=1 / m, \operatorname{Pr}[C \mid K]=1$. Hence, $\operatorname{Pr}[C]=\operatorname{Pr}[C \mid K] \operatorname{Pr}[K]+\operatorname{Pr}\left[C \mid K^{c}\right] \operatorname{Pr}\left[K^{c}\right]=(1)(p)+\frac{1}{m}(1-p)$.
$\operatorname{Pr}[K \mid C]=\frac{\operatorname{Pr}[C \mid K] \operatorname{Pr}[K]}{\operatorname{Pr}[C]}=\frac{m p}{1+(m-1) p}$.

