CMPT 210: Probability and Computation

Lecture 6

Sharan Vaswani
May 27, 2022

Recap - Axioms of Probability

Sample (outcome) space \mathcal{S} : Nonempty (countable) set of possible outcomes. Example: When we threw one dice, the sample space is $\{1,2,3,4,5,6\}$.

Outcome $\omega \in \mathcal{S}$: Possible "thing" that can happen. Example: When we threw one dice, a possible outcome is $\omega=1$.

Event E : Any subset of the sample space. Example: When we threw one dice, a possible event is $E=\{6\}$ (first example) or $E=\{3,6\}$ (second example).

Probability function on a sample space \mathcal{S} is a total function $\operatorname{Pr}: \mathcal{S} \rightarrow[0,1]$. For any $\omega \in \mathcal{S}$,

$$
0 \leq \operatorname{Pr}[\omega] \leq 1 \quad ; \quad \sum_{\omega \in \mathcal{S}} \operatorname{Pr}[\omega]=1 \quad ; \quad \operatorname{Pr}[E]=\sum_{\omega \in E} \operatorname{Pr}[\omega]
$$

Recap - Probability rules

Union: For mutually exclusive events $E_{1}, E_{2}, \ldots, E_{n}$, $\operatorname{Pr}\left[E_{1} \cup E_{2} \cup \ldots E_{n}\right]=\operatorname{Pr}\left[E_{1}\right]+\operatorname{Pr}\left[E_{2}\right]+\ldots+\operatorname{Pr}\left[E_{n}\right]$.
Complement rule: $\operatorname{Pr}[E]=1-\operatorname{Pr}\left[E^{c}\right]$
Inclusion-Exclusion rule: For any two events $E, F, \operatorname{Pr}[E \cup F]=\operatorname{Pr}[E]+\operatorname{Pr}[F]-\operatorname{Pr}[E \cap F]$.
Union Bound: For any events $E_{1}, E_{2}, E_{3}, \ldots E_{n}, \operatorname{Pr}\left[E_{1} \cup E_{2} \cup E_{3} \ldots \cup E_{n}\right] \leq \sum_{i=1}^{n} \operatorname{Pr}\left[E_{i}\right]$.
Uniform probability space: A probability space is said to be uniform if $\operatorname{Pr}[\omega]$ is the same for every outcome $\omega \in \mathcal{S}$. In this case, $\operatorname{Pr}[E]=\frac{|E|}{|\mathcal{S}|}$.

Probability - Examples

Q: Let us consider random permutations of the letters (i) $A B B A$ (ii) $A B B A^{\prime}$. What is the probability that the third letter is B ?
Ans: (i) $|\mathcal{S}|=\frac{4!}{2!2!}=6 .|E|=\frac{3!}{2!1!}=3 . \operatorname{Pr}[E]=\frac{1}{2}$.
(ii) $|\mathcal{S}|=\frac{4!}{2!1!1!}=12 .|E|=\frac{3!}{1!1!}=6 . \operatorname{Pr}[E]=\frac{1}{2}$.

Questions?

Conditional Probability

Conditioning is revising probabilities based on partial information (an event).
For example, suppose we throw a "standard" dice, what is the probability of getting a 6 if we are told that the outcome is even? Compute Pr (we get a $6 \mid$ the outcome is even) (Probability of getting a 6 given that the outcome is even)/(Probability of getting a 6 conditioned on the event that the outcome is even).
Sample space: $\mathcal{S}=\{1,2,3,4,5,6\}$, Event: $E=\{6\}$. Additional information: Event $F=\{2,4,6\}$ has happened. With conditioning, F can be interpreted as the new sample space.

Since each outcome in $F=\{2,4,6\}$ is still equally likely, the new probability space is still a uniform probability space. Hence, conditioned on the event that the outcome is even, $\sum_{\omega \in F} \operatorname{Pr}[\omega]=1$ and $\operatorname{Pr}[\{$ even number $\}]=\frac{1}{3}$ and $\operatorname{Pr}[\{$ odd number $\}]=0$.
Q: What is the probability of getting either a 3 or 6 if we are told that the outcome is even? Ans: $E=\{3,6\}, F=\{2,4,6\} . \operatorname{Pr}[\{3\}]=0 . \operatorname{Pr}[\{6\}]=1 / 3$. Hence, $\operatorname{Pr}[E]=\operatorname{Pr}[\{3\}]+\operatorname{Pr}[\{6\}]=\frac{1}{3}$.

Conditional Probability

For two events E and F, we wish to compute the probability of event E conditioned on F i.e. event F has happened/constrained to happen.

By conditioning on F, the only outcomes we care about are in F i.e. for $\omega \notin F, \operatorname{Pr}[\omega \mid F]=0$.
Since we want to compute the probability that event E happens, we care about the outcomes that are in E. Hence, the outcomes we care about lie in both E and F, meaning that $\omega \in E \cap F$. $\Longrightarrow \operatorname{Pr}[E \mid F] \propto \sum_{\omega \in(E \cap F)} \operatorname{Pr}[\omega]$. By definition of proportionality, for some constant $c>0$, $\operatorname{Pr}[E \mid F]=c \sum_{\omega \in(E \cap F)} \operatorname{Pr}[\omega]$.
We know that $\operatorname{Pr}[F \mid F]=1$ (probability of event F given that F has happened). Hence, $\operatorname{Pr}[F \mid F]=1=c \sum_{\omega \in F} \operatorname{Pr}[\omega] \Longrightarrow c=\frac{1}{\sum_{\omega \in F} \operatorname{Pr}[\omega]}$.
Substituting the value of c,

$$
\operatorname{Pr}[E \mid F]=\frac{\sum_{\omega \in(E \cap F)} \operatorname{Pr}[\omega]}{\sum_{\omega \in F} \operatorname{Pr}[\omega]}=\frac{\operatorname{Pr}[E \cap F]}{\operatorname{Pr}[F]} \text {, where } \operatorname{Pr}[F] \neq 0 \text {. }
$$

Back to throwing dice

Suppose we throw a "standard" dice, what is the probability of getting a 6 if we are told that the outcome is even?

Sample space: $\mathcal{S}=\{1,2,3,4,5,6\}$, Event: $E=\{6\}$. We are conditioning on $F=\{2,4,6\}$.
Hence, $\operatorname{Pr}($ we get a $6 \mid$ the outcome is even $)=\operatorname{Pr}[E \mid F]=\frac{\operatorname{Pr}[E \cap F]}{\operatorname{Pr}[F]}$.
$E \cap F=\{6\} . \operatorname{Pr}[E \cap F]=\frac{1}{6} . \operatorname{Pr}[F]=\operatorname{Pr}[\{2\}]+\operatorname{Pr}[\{4\}]+\operatorname{Pr}[\{6\}]=\frac{1}{2}$. Hence, $\frac{\operatorname{Pr}[E \cap F]}{\operatorname{Pr}[F]}=\frac{1 / 6}{1 / 2}=\frac{1}{3}$.
Q: What is the probability of getting either a 3 or 6 if we are told that the outcome is even? Ans: $E=\{3,6\}, F=\{2,4,6\} . E \cap F=\{6\} . \operatorname{Pr}[E]=\operatorname{Pr}[\{6\}]=\frac{1}{6} . \operatorname{Pr}[\{F\}]=\frac{1}{2}$. Hence, $\operatorname{Pr}[E \mid F]=\frac{1}{3}$.

Questions?

Conditional Probability - Examples

Q: Suppose we select a card at random from a standard deck of 52 cards. What is the probability of getting:

- A spade conditioned on the event that I picked the red color Ans: 0
- A spade facecard conditioned on the event that I picked the black color Ans: $\frac{3}{26}$
- A black card conditioned on the event that I picked a spade facecard Ans: 1
- The queen of hearts given that I picked a queen Ans: $\frac{1}{4}$
- An ace given that I picked a spade Ans: $\frac{1}{13}$

