CMPT 210: Probability and Computation

Lecture 6

Sharan Vaswani

May 27, 2022

Sample (outcome) space S: Nonempty (countable) set of possible outcomes. Example: When we threw one dice, the sample space is $\{1, 2, 3, 4, 5, 6\}$.

Outcome $\omega \in S$: Possible "thing" that can happen. Example: When we threw one dice, a possible outcome is $\omega = 1$.

Event *E*: Any subset of the sample space. Example: When we threw one dice, a possible event is $E = \{6\}$ (first example) or $E = \{3, 6\}$ (second example).

Probability function on a sample space S is a total function $Pr : S \to [0, 1]$. For any $\omega \in S$,

$$0 \le \Pr[\omega] \le 1$$
 ; $\sum_{\omega \in S} \Pr[\omega] = 1$; $\Pr[E] = \sum_{\omega \in E} \Pr[\omega]$

Union: For mutually exclusive events E_1, E_2, \ldots, E_n , $\Pr[E_1 \cup E_2 \cup \ldots E_n] = \Pr[E_1] + \Pr[E_2] + \ldots + \Pr[E_n]$.

Complement rule: $\Pr[E] = 1 - \Pr[E^c]$

Inclusion-Exclusion rule: For any two events $E, F, \Pr[E \cup F] = \Pr[E] + \Pr[F] - \Pr[E \cap F]$. **Union Bound**: For any events $E_1, E_2, E_3, \dots, E_n, \Pr[E_1 \cup E_2 \cup E_3 \dots \cup E_n] \le \sum_{i=1}^n \Pr[E_i]$. **Uniform probability space**: A probability space is said to be uniform if $\Pr[\omega]$ is the same for

every outcome $\omega \in \mathcal{S}.$ In this case, $\mathsf{Pr}[\mathcal{E}] = rac{|\mathcal{E}|}{|\mathcal{S}|}.$

Q: Let us consider random permutations of the letters (i) ABBA (ii) ABBA'. What is the probability that the third letter is B?

Ans: (i)
$$|\mathcal{S}| = \frac{4!}{2!2!} = 6$$
. $|E| = \frac{3!}{2!1!} = 3$. $\Pr[E] = \frac{1}{2}$.
(ii) $|\mathcal{S}| = \frac{4!}{2!1!1!} = 12$. $|E| = \frac{3!}{1!1!} = 6$. $\Pr[E] = \frac{1}{2}$.

Questions?

Conditioning is revising probabilities based on partial information (an event).

For example, suppose we throw a "standard" dice, what is the probability of getting a 6 if we are told that the outcome is even? Compute Pr(we get a 6|the outcome is even) (Probability of getting a 6 *given* that the outcome is even)/(Probability of getting a 6 *conditioned on the event* that the outcome is even).

Sample space: $S = \{1, 2, 3, 4, 5, 6\}$, Event: $E = \{6\}$. Additional information: Event $F = \{2, 4, 6\}$ has happened. With conditioning, F can be interpreted as the *new sample space*. Since each outcome in $F = \{2, 4, 6\}$ is still equally likely, the new probability space is still a uniform probability space. Hence, conditioned on the event that the outcome is even, $\sum_{\omega \in F} \Pr[\omega] = 1$ and $\Pr[\{\text{even number}\}] = \frac{1}{3}$ and $\Pr[\{\text{odd number}\}] = 0$. Q: What is the probability of getting either a 3 or 6 if we are told that the outcome is even? Ans:

 $E = \{3, 6\}, F = \{2, 4, 6\}. Pr[\{3\}] = 0. Pr[\{6\}] = 1/3. Hence, Pr[E] = Pr[\{3\}] + Pr[\{6\}] = \frac{1}{3}.$

Conditional Probability

For two events E and F, we wish to compute the probability of event E conditioned on F i.e. event F has happened/constrained to happen.

By conditioning on F, the only outcomes we care about are in F i.e. for $\omega \notin F$, $\Pr[\omega|F] = 0$.

Since we want to compute the probability that event *E* happens, we care about the outcomes that are in *E*. Hence, the outcomes we care about lie in both *E* and *F*, meaning that $\omega \in E \cap F$. $\implies \Pr[E|F] \propto \sum_{\omega \in (E \cap F)} \Pr[\omega]$. By definition of proportionality, for some constant c > 0, $\Pr[E|F] = c \sum_{\omega \in (E \cap F)} \Pr[\omega]$.

We know that $\Pr[F|F] = 1$ (probability of event F given that F has happened). Hence, $\Pr[F|F] = 1 = c \sum_{\omega \in F} \Pr[\omega] \implies c = \frac{1}{\sum_{\omega \in F} \Pr[\omega]}.$

Substituting the value of c,

$$\Pr[E|F] = \frac{\sum_{\omega \in (E \cap F)} \Pr[\omega]}{\sum_{\omega \in F} \Pr[\omega]} = \frac{\Pr[E \cap F]}{\Pr[F]}, \text{ where } \Pr[F] \neq 0.$$

Suppose we throw a "standard" dice, what is the probability of getting a 6 if we are told that the outcome is even?

Sample space: $S = \{1, 2, 3, 4, 5, 6\}$, Event: $E = \{6\}$. We are conditioning on $F = \{2, 4, 6\}$.

Hence, $Pr(we \text{ get a } 6|\text{the outcome is even}) = Pr[E|F] = \frac{Pr[E \cap F]}{Pr[F]}$.

$$E \cap F = \{6\}. \ \Pr[E \cap F] = \frac{1}{6}. \ \Pr[F] = \Pr[\{2\}] + \Pr[\{4\}] + \Pr[\{6\}] = \frac{1}{2}. \ \text{Hence,}$$

 $\frac{\Pr[E \cap F]}{\Pr[F]} = \frac{1/6}{1/2} = \frac{1}{3}.$

Q: What is the probability of getting either a 3 or 6 if we are told that the outcome is even? Ans: $E = \{3,6\}, F = \{2,4,6\}, E \cap F = \{6\}, \Pr[E] = \Pr[\{6\}] = \frac{1}{6}, \Pr[\{F\}] = \frac{1}{2}$. Hence, $\Pr[E|F] = \frac{1}{3}$.

Questions?

 $\mathsf{Q} :$ Suppose we select a card at random from a standard deck of 52 cards. What is the probability of getting:

- \bullet A spade conditioned on the event that I picked the red color Ans: 0
- A spade facecard conditioned on the event that I picked the black color Ans: $\frac{3}{26}$
- \bullet A black card conditioned on the event that I picked a spade facecard Ans: 1
- The queen of hearts given that I picked a queen Ans: $\frac{1}{4}$
- An ace given that I picked a spade Ans: $\frac{1}{13}$