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Recap - Counting

Product Rule: For sets A1, A2 . . . ,Am, |A1 × A2 × . . .× Am| =
∏m

i=1 |Ai | (E.g: Selecting one
course each from every subject.)

Sum rule: If A1,A2 . . .Am are disjoint sets, then, |A1 ∪ A2 ∪ . . . ∪ Am| =
∑m

i=1 |Ai | (E.g
Number of rainy, snowy or hot days in the year).

Generalized product rule: If S is the set of length k sequences such that the first entry can be
selected in n1 ways, after the first entry is chosen, the second one can be chosen in n2 ways, and
so on, then |S | = n1 × n2 × . . . nk . (E.g Number of ways n people can be arranged in a line = n!)

Division rule: f : A → B is a k-to-1 function, then, |A| = k|B|. (E.g. For arranging people
around a round table, f : seatings → arrangements is an n-to-1 function).

Number of ways of choosing size k-subsets from a size n-set:
(
n
k

)
(E.g. Number of n-bit

sequences with exactly k ones).
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Counting subsets - Example

Q: What is the number of n-bit binary sequences with at least k ones?

Ans: Set of n-bit binary sequences with at least k ones = n-bit binary sequences with exactly k

ones ∪ n-bit binary sequences with exactly k + 1 ones ∪ . . .∪ n-bit binary sequences with exactly
n ones. By the sum rule for disjoint sets, number of n-bit binary sequences with at least k ones
=

∑n
i=k

(
n
i

)
.

Q: What is the number of n-bit binary sequences with less than k ones?

Ans:
∑k−1

i=0

(
n
i

)
Q: What is the total number of n-bit binary sequences?

Ans: 2n

Total number of n-bit binary sequences = number of n-bit binary sequences with at least k ones
+ number of n-bit binary sequences with less than k ones.

Combining the above answers, we can conclude that,
∑n

k=0

(
n
k

)
= 2n. Have recovered a special

case of the binomial theorem! 2



Binomial Theorem

For all n ∈ N and a, b ∈ R,

(a+ b)n =
n∑

k=0

(
n

k

)
an−kbk

Examples: If a = b = 1, then
∑n

k=0

(
n
k

)
= 2n (result from previous slide).

If n = 2, then (a+ b)2 =
(2
0

)
a2 +

(2
1

)
ab +

(2
2

)
b2 = a2 + 2ab + b2.

Q: What is the coefficient of the terms with ab3 and a2b3 in (a+ b)4? Ans:
(4
1

)
=

(4
3

)
, 0.

Q: For a, b > 0, what is the coefficient of a2n−7b7 and a2n−8b8 in (a+ b)2n + (a− b)2n?

Ans: (a+ b)2n =
∑2n

k=0

(2n
k

)
a2n−kbk ,

(a− b)2n = −
∑2n

k=0

(2n
k

)
a2n−kbk I{k is odd}+

∑2n
k=0

(2n
k

)
a2n−kbk I{k is even}.

(a+ b)2n + (a− b)2n = 2
∑2n

k=0

(2n
k

)
a2n−kbk I{k is even}. Hence, coefficient of a2n−7b7 = 0,

coefficient of a2n−8b8 = 2
(2n

8

)
.
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Questions?

3



Generalization to Multinomials

We saw how to split a set into two subsets - one that contains some elements, while the other
does not. Can generalize the arguments to split a set into more than two subsets.

A (k1, k2, . . . , km)-split of set A is a sequence of sets (A1,A2, . . .Am) s.t. sets Ai form a
partition (A1 ∪ A2 ∪ . . . = A) and |Ai | = ki .

An example of a (2, 1, 3)-split of A = {1, 2, 3, 4, 5, 6} is {{2, 4}, {1}, {3, 5, 6}}. Here, m = 3,
A1 = {2, 4}, A2 = {1}, A3 = {3, 5, 6} s.t. |A1| = 2, |A2| = 1, |A3| = 3 and A1 ∪ A2 ∪ A3 = A.

Example: Strings of length 6 of a’s, b’s and c ’s such that number of a’s = 2; number of b’s =
1 and number of c ’s = 3. Possible strings: abaccc, ccbaac, bacacc, cbacac.

Each possible string, e.g. bacacc can be written as a (2, 1, 3)-split of A = {1, 2, 3, 4, 5, 6} as
{{2, 4}, {1}, {3, 5, 6}} where A1 records the positions of a, A2 records the positions of b and A3

records the positions of c .
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Generalization to Multinomials

Show that the number of ways to obtain an (k1, k2, . . . , km) split of A with |A| = n is(
n

k1,k2,...km

)
= n!

k1! k2! ...km!
where

∑
i ki = n.

Can map any permutation (a1, a2, . . . an) into a split by selecting the first k1 elements to form
set A1, next k2 to form set A2 and so on. For the same split, the order of the elements in each
subset does not matter. Hence f : number of permutations → number of splits is a
k1! k2! . . . km!-to-1 function.

Hence, |number of splits| = |number of permutations|
k1! k2! ...km!

= n!
k1! k2! ...km!

.
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Generalization to Multinomials - Example

Count the number of permutations of the letters in the word BOOKKEEPER.

We want to count sequences of the form (1E , 1P, 2E , 1B, 1K , 1R, 2O, 1K ) = EPEEBKROOK .
There is a bijection between such sequences and (1, 2, 2, 3, 1, 1) split of A = {1, 2, . . . , 10} where
A1 is the set of positions of B ’s, A2 is the set of positions of O’s, A3 is set of positions of K and
so on.

For example, the above sequence maps to the following split:
({5}, {8,9}, { 6, 10}, { 1,3,4 }, { 2 }, { 7 })

Hence, the total number of sequences that can be formed from the letters in BOOKKEEPER =
number of (1, 2, 2, 3, 1, 1) splits of A = [10] = {1, 2, . . . , 10} = 10!

1! 2! 2! 3! 1! 1! .

Q: Count the number of permutations of the letters in the word (i) ABBA (ii) A1BBA2 and (iii)
A1B1B2A2? Ans: 6, 12, 24
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Generalization to Multinomials - Example

Q: Suppose we are planning a 20 km walk, which should include 5 northward km, 5 eastward km,
5 southward km, and 5 westward km. How many different walks are possible?

Ans: The set A = {1, 2, . . . , 20} needs to be split into 4 subsets N,S ,E ,W s.t.
|N| = |S | = |E | = |W | = 5. Counting the number of walks = counting the number of sequences
of the form (3N, 5W , 4S , 4E , 2N, 1E , 1S) = number of ways to obtain an (5, 5, 5, 5)-split of set
{1, 2, 3, . . . 20}. The total number of walks = 20!

(5!)4 .
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Multinomial Theorem

For all m, n ∈ N and z1, z2, . . . zm ∈ R,

(z1 + z2 + . . .+ zm)
n =

∑
k1,k2,...,km

k1+k2+...km=n

(
n

k1, k2, . . . , km

)
zk1
1 zk2

2 . . . zkmm

where
(

n
k1,k2,...,km

)
= n!

k1!k2!...km!
.

Example 1: If m = 2, k1 = k , k2 = n − k and z1 = a, z2 = b, recover the Binomial theorem.

Example 2: If n = 4, m = 3, then the coefficient of abc2 in (a+ b + c)4 is
( 4
1,1,2

)
= 4!

1!1!2! .
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Questions?
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Inclusion-Exclusion Principle

Recall that if A,B,C are disjoint subsets, then, |A ∪ B ∪ C | = |A|+ |B|+ |C | (this is the Sum
rule from Lecture 1).

For two general sets A, B, |A ∪ B| = |A|+ |B| − |A ∩ B|. The last term fixes the “double
counting”.

Similarly, |A ∪ B ∪ C | = |A|+ |B|+ |C | − |A ∩ B| − |B ∩ C | − |A ∩ C |+ |A ∩ B ∩ C |.

In general,

| ∪i=1,2,...n Ai | =
∑
i

|Ai | −
∑

i,j s.t. 1≤i<j≤n

|Ai ∩ Aj |+
∑

i,j,k s.t. 1≤i<j<k≤n

|Ai ∩ Aj ∩ Ak |

+ . . .+ (−1)n| ∩i=1,2,...n Ai |
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Inclusion-Exclusion Principle - Example

Suppose there are 60 math majors, 200 EECS majors, and 40 physics majors. How many
students are there in these three departments?

A student is allowed to double or even triple major. There are 4 math-EECS double majors, 3
math-physics double majors, 11 EECS-physics double majors and 2-triple majors.

If M,E ,P are the sets of Math, EECS and physics majors, then we wish to compute
|M ∪ E ∪ P| = |M|+ |E |+ |P| − |M ∩ E | − |M ∩ P| − |E ∩ P|+ |M ∩ E ∩ P| = 300 -
|M ∩ E | − |M ∩ P| − |E ∩ P|+ |M ∩ E ∩ P|.

|M ∩ E | = 4 + 2 = 6, |M ∩ P| = 3 + 2 = 5, |P ∩ E | = 11 + 2 = 13. |M ∩ E ∩ P| = 2

|M ∪ E ∪ P| = 300 − 6 − 5 − 13 + 2 = 278.
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Inclusion-Exclusion Principle - Example

In how many permutations of the set {0, 1, 2, . . . , 9} do either 4 and 2, 0 and 4, or 6 and 0
appear consecutively? For example, in the following permutation 42067891235, 4 and 2 appear
consecutively, but 6 and 0 do not (the order matters).

Let P42 be the set of sequences such that 4 and 2 appear consecutively. Similarly, we define P60

and P04. So we want to compute
|P42∪P60∪P04| = |P42|+ |P60|+ |P04|−|P42∩P60|−|P42∩P04|−|P60∩P04|+ |P42∩P60∩P04|.

Let us first compute |P42| = 9!. Similarly, |P60| = |P04| = 9!.

What about intersections? |P42 ∩ P60| = Number of sequences of the form
(42, 60, 1, 3, 5, 7, 8, 9) = 8!. Similarly, |P60 ∩ P04| = |P42 ∩ P04| = 8!.

|P42 ∩ P60 ∩ P04| = Number of sequences of the form (6042, 1, 3, 5, 7, 8, 9) = 7!.

By the inclusion-exclusion principle, |P42 ∪ P60 ∪ P04| = 3 × 9!− 3 × 8! + 7!.
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Combinatorial Proofs

Suppose we have to choose k elements out of a size n set. Number of ways to do this is
(
n
k

)
. But

this is equivalent to saying, we want to find the number of ways to throw away n− k elements =(
n

n−k

)
. Hence,

(
n
k

)
=

(
n

n−k

)
. Can prove algebraic statements using combinatorial arguments.

Let us prove Pascal’s identity using a combinatorial proof:
(
n
k

)
=

(
n−1
k−1

)
+

(
n−1
k

)
Consider n students in this class. What is the number of ways of selecting k students?

(
n
k

)
.

What is the number of ways of selecting k students if we have to ensure to include a particular
student?

(
n−1
k−1

)
.

What is the number of ways of selecting k students if we have to ensure to NOT include a
particular student?

(
n−1
k

)
.

Number of ways to select k students = number of ways of selecting k students to include a
particular student + number of ways of selecting k students to NOT include a particular student.
Hence,

(
n
k

)
=

(
n−1
k−1

)
+
(
n−1
k

)
.
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Questions?
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Pigeonhole principle

A drawer in a dark room contains red socks, green socks, and blue socks. How many socks must
you withdraw to be sure that you have a matching pair?

Such problems can be tackled using the Pigeonhole principle.

Pigeonhole Principle: If there are more pigeons than holes they occupy, then there must be at
least two pigeons in the same hole.

Formally, if |A| > |B|, then for every total function (one that has an assignment for every
element in A), f : A → B, there exist two different elements of A that are mapped by f to the
same element of B.

For the above problem, A = set of socks we picked = pigeons, B = set of colors {red, blue,
green} = pigeonholes. |A| = number of socks we picked. |B| = 3. f : A → B s.t. f (sock we
picked) = it’s color.

If there are more pigeons than holes (picked socks than colors), then at least two pigeons will be
in the same hole (two of the picked socks will have the same color, and we get a matching pair).
Hence, to ensure a matching pair, we need to pick 4 socks. 13



Pigeonhole principle - Example

Q: This class has 54 students. Prove that there exist at least 2 students with their birthday in
the same week.

Ans: 54 students = pigeons. 52 weeks = pigeonholes.

Q: In the set of integers {1, 2, . . . , 100}, use the pigeonhole principle to prove that there exist
two numbers whose difference is a multiple of 41.

Ans: {1, 2, . . . , 100} = pigeons, {0, 1, 2, . . . 40} = holes, f : {1, 2, . . . , 100} → {0, 1, 2, . . . 40}
s.t. f (n) = n mod 41 i.e. f (n) returns the remainder after dividing by 41. Since |pigeons| >
|holes|, there exist 2 numbers a, b that have the same remainder after dividing by 41. Let the
remainder by r , then a = 41m1 + r and b = 41m2 + r where m1, m2 are integers.
a− b = 41(m1 −m2). Hence, a− b is a multiple of 41.
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Pigeonhole principle - Example

A kind of problem that arises in cryptography is to find different subsets of numbers with the
same sum. For example, in this list of 25-digit numbers, find a subset of numbers that have the
same sum. For example, maybe the sum of the last ten numbers in the first column is equal to
the sum of the first eleven numbers in the second column.

This is a hard problem which is why it is used in cryptography. The first step to figure out is
whether there even exists such a subset of numbers. We can do this using the pigeonhole
principle!
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Pigeonhole principle - Example

More generally, in a list of n b-digit numbers, are there two different subsets of numbers that
have the same sum?

Let A = set of all subsets of the n numbers. For example, if b = 3, an element of A is
{113, 221, 42}. |A| = 2n

Let B be the set of possible sums of such subsets. f is a function that maps each subset to its
corresponding sum. For example, if b = 3, f ({113, 221}) = 334.

Let us compute |B|. For any list of n numbers, Minimum possible sum = 0. Max possible sum <
10b × n. For example, if b = 3 and n = 5, then the maximum possible sum =
999 × 5 < 1000 × 5. Hence, |B| < 10b × n.

By the pigeonhole principle, there exist different subsets with the same sum if |A| ≥ |B| i.e. if
2n > 10b × n.

For b = 3, this is possible if 2n > 1000n, meaning this is possible if n log(2) > 3 + log(n) (since
log is a monotonic function) Let’s plot.
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Pigeonhole - Example

Hence, it is possible when n > 15. Similarly, for a general b, there exist different subsets with the
same sum if n log(2) > b + log(n).
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Questions?
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