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Logistics

Final Exam is on August 14 (Sunday) from 12 pm - 3 pm in AQ 3005.

Scope of the Final:

Syllabus includes everything that we have covered (Lectures 1 - 24 and Assignments 1-4).

For continuous r.v’s, there will be only very basic questions (no difficult integrals).

You are allowed to bring a A4-sized, two-sided, hand-written formula sheet for the Final.

Go through the slides/assignments and (Meyer, Lehman, Leighton) to prepare.

Final will be “easy” – if your concepts are clear, you should be able to get full marks.

Office hours next week: Tuesday, 9 August, 11 am - 1 pm & Thursday, 11 August, 9 am - 10 am.
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Recap

The distribution of a continuous r.v. R is completely specified by its PDF fR : R → R+ and CDF
FR : R → [0, 1].

Probability Density Function: For all u, fR(u) ≥ 0 and satisfies Pr[R ∈ [a, b]] =
∫ b

a
fR(u) du.∫∞

−∞ fR(u) du = 1.

Cumulative Distribution Function: For all u, FR(u) := Pr[R ≤ u] =
∫ u

−∞ fR(u) du and
satisfies: limu→−∞ FR(u) = 0 and limu→∞ FR(u) = 1.

PDF and CDF: For any continuous r.v. R, dFR (v)
dv =

d
∫ v
−∞ fR (u) du

dv = fR(v).

Expectation and Variance: For a continuous r.v. R, E[R] =
∫∞
−∞ u fR(u) du and

Var[R] = (
∫∞
−∞ u2 fR(u) du)− (

∫∞
−∞ u fR(u) du)

2.
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Recap

Continuous uniform distribution: If R ∼ Uniform[a, b], for all u ∈ [a, b], fR(u) = 1
b−a and

fR(u) = 0 if u /∈ [a, b]. ∀u ∈ [a, b], FR(u) =
u−a
b−a . FR(u) = 0 if u < a and FR(u) = 1 if u > b.

Expectation and Variance for the continuous uniform distribution: If R ∼ Uniform[a, b],
E[R] = b+a

2 and Var[R] = (b−a)2

12 .

Standard Normal Distribution: Random variable R follows the standard normal distribution i.e.
X ∼ N (0, 1) if fR(u) = Φ(u) := 1√

2π
exp

(
−u2

2

)
.

Normal Distribution: Random variable R follows the Normal distribution i.e. R ∼ N (µ, σ2) if
fR(x) =

1√
2πσ2 exp

(
−(x−µ)2

2σ2

)
.

Expectation and Variance for the normal distribution: If R ∼ N (µ, σ2), E[R] = µ and
Var[R] = σ2.

Standardizing a Gaussian: If X ∼ N (µ, σ2), then Z = X−µ
σ ∼ N (0, 1).
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Questions?
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Properties of the Normal Distribution

Sum of independent Gaussian r.v’s: If X1,X2, . . . ,Xn are mutually independent random
variables, and Xi ∼ N (µi , σ

2
i ), then if X = X1 + X2 + . . .+ Xn, then

X ∼ N
(∑n

i=1 µi ,
∑n

i=1 σ
2
i

)
.

As a check, note that by the linearity of expectation,
E[X ] = E

[∑n
i=1 Xi

]
=

∑n
i=1 E[Xi ] =

∑n
i=1 µi .

Similarly, by the linearity of variance of pairwise independent random variables,
Var

[∑n
i=1 Xi

]
=

∑n
i=1 Var[Xi ] =

∑n
i=1 σ

2
i .

The above statement is much stronger – not only does it quantify the mean and variance of the
sum of independent Gaussian r.v’s, it also says that the resulting distribution of X is also a
Gaussian!
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Central Limit Theorem

We have seen that the normal distribution can be seen as the limit of the Binomial distribution –
specifically, for large n, if X1,X2, . . . ,Xn are Bernoulli random variables with parameter p, then

for X = X1 + X2 + . . .Xn, fX (x) ≈
√

1
2π σ2 exp

(
− (x−µ)2

2σ2

)
where µ = E[X ] = np and

σ2 = Var[X ] = n p (1 − p).

We also saw that if X1,X2, . . . ,Xn are independent Gaussian r.v’s (with mean µi and variance

σ2
i ) and X = X1 + X2 + . . .+ Xn, then, fX (x) =

√
1

2π σ2 exp
(
− (x−µ)2

2σ2

)
where µ =

∑
i µi and

σ2 =
∑

i σ
2
i .

Hence, in both cases, by “standardizing” X i.e. for Y := X−µ
σ , Y ∼ N (0, 1).
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Central Limit Theorem

Central Limit Theorem: For independent random variables X1,X2, . . . ,Xn with finite mean
µ := E[Xi ] and finite variance σ2 := Var[Xi ], if X = X1 + X2 + . . .+ Xn and Y := X−nµ√

nσ
(such

that E[Y ] = 1 and Var[Y ] = 1), then, for all t,

lim
n→∞

FY (t) = lim
n→∞

Pr[Y ≤ t] = Φ(t) = Pr[N (0, 1) ≤ t] =

∫ t

−∞

1√
2π

exp

(
−u2

2

)
du

This is true for any distribution of the Xi ’s! (given that the mean and variances are bounded),
but is only an asymptotic result (only true as n → ∞).

Compare this to the Chernoff bound that is non-asymptotic (holds for all n and has an explicit
dependence on n) (and requires the Xi ∈ [0, 1]). Chernoff only bounds the probability of
deviation from the mean, while CLT is a statement about the whole distribution.

Compare this to the weak law of large numbers that proves that limn→∞ X/n = µ and is an
asymptotic statement about the mean. On the other hand, CLT is a statement about the whole
distribution.
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Central Limit Theorem

In practice, for large n (when n ⪆ 30), the CLT is a powerful tool – by bounding the CDF of a
Gaussian, we can obtain a handle on the distribution of Y and hence X . It can thus be used as
an alternate to the tail inequalities we discussed earlier.

Under additional assumptions, CLT can be modified to give a non-asymptotic bound in the form
of the Berry-Esseen Theorem.

Berry-Esseen Theorem: For independent random variables X1,X2, . . . ,Xn with finite mean
µ := E[Xi ] and finite variance σ2 := Var[Xi ], if X = X1 + X2 + . . .+ Xn and Y := X−nµ√

nσ
(such

that E[Y ] = 1 and Var[Y ] = 1) and β := E[|X ]|3] < ∞, then, for all t,

|FY (t)− Φ(t)| ≤ O

(
β√
n

)
.

Hence, under the additional assumption that the third moment is bounded, the distribution of
Y approaches that of the standard normal distribution at an O(1/

√
n) rate.

The Berry-Esseen theorem gives some justification why the CLT works so well for the
well-behaved real distributions even for finite n. 7



Questions?
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Wrapping up

Sample (outcome) space S: Nonempty (countable) set of possible outcomes.

Outcome ω ∈ S: Possible “thing” that can happen.

Event E : Any subset of the sample space.

Probability function on a sample space S is a total function Pr : S → [0, 1]. For any ω ∈ S,

0 ≤ Pr [ω] ≤ 1 ;
∑
ω∈S

Pr[ω] = 1 ; Pr[E ] =
∑
ω∈E

Pr[ω]
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Wrapping up

Union: For mutually exclusive events E1,E2, . . . ,En,
Pr[E1 ∪ E2 ∪ . . .En] = Pr[E1] + Pr[E2] + . . .+ Pr[En].

Complement rule: Pr[E ] = 1 − Pr[E c ]

Inclusion-Exclusion rule: For any two events E ,F , Pr[E ∪ F ] = Pr[E ] + Pr[F ]− Pr[E ∩ F ].

Union Bound: For any events E1,E2,E3, . . .En, Pr[E1 ∪ E2 ∪ E3 . . . ∪ En] ≤
∑n

i=1 Pr[Ei ].

Uniform probability space: A probability space is said to be uniform if Pr[ω] is the same for
every outcome ω ∈ S. In this case, Pr[E ] = |E |

|S| .
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Wrapping up

Conditional Probability: For events E and F , probability of event E conditioned on F is given
by Pr[E |F ] and can be computed as Pr[E |F ] = Pr[E∩F ]

Pr[F ] .

Probability rules with conditioning: For the complement E c , Pr[E c |F ] = 1 − Pr[E |F ].

Conditional Probability for multiple events:
Pr[E1 ∩ E2 ∩ E3] = Pr[E1] Pr[E2|E1] Pr[E3|E1 ∩ E2].

Bayes rule: For events E and F if Pr[E ] ̸= 0, Pr[F |E ] = Pr[E |F ] Pr[F ]
Pr[E ] .

Law of Total Probability: For events E and F , Pr[E ] = Pr[E |F ] Pr[F ] + Pr[E |F c ] Pr[F c ].

Independent Events: Events E and F are said to be independent, if knowledge that F has
occurred does not change the probability that E occurs, i.e. Pr[E |F ] = Pr[E ] and
Pr[E ∩ F ] = Pr[E ] Pr[F ].
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Wrapping up

Pairwise Independence: Events E1, E2, . . . , En are pairwise independent, if for every pair of
events Ei and Ej (i ̸= j), Pr[Ei |Ej ] = Pr[Ei ] and Pr[Ei ∩ Ej ] = Pr[Ei ] Pr[Ej ].

Mutual Independence: Events E1, E2, . . . , En are mutually independent, if for every subset of
events, the probability that all the selected events occur equals the product of the probabilities of
the selected events. Formally, for every subset S ⊆ {1, 2, . . . , n}, Pr[∩i∈SEi ] =

∏
i∈S Pr[Ei ].

Random variable: A random “variable” R on a probability space is a total function whose
domain is the sample space S. The codomain is denoted by V (usually a subset of the real
numbers), meaning that R : S → V .

Indicator Random Variables: An indicator random variable corresponding to an event E is
denoted as IE and is defined such that for ω ∈ E , IE [ω] = 1 and for ω /∈ E , IE [ω] = 0.
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Wrapping up

Probability density function (PDF): Let R be a random variable with codomain V . The
probability density function of R is the function PDFR : V → [0, 1], such that
PDFR [x ] = Pr[R = x ] if x ∈ Range(R) and equal to zero if x /∈ Range(R).∑

x∈V PDFR [x ] =
∑

x∈Range(R) Pr[R = x ] = 1.

Cumulative distribution function (CDF): The cumulative distribution function of R is the
function CDFR : R → [0, 1], such that CDFR [x ] = Pr[R ≤ x ].

Distribution over a random variable can be fully specified using the cumulative distribution
function (CDF) (usually denoted by F ). The corresponding probability density function (PDF) is
denoted by f .
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Wrapping up

Bernoulli Distribution: fp(0) = 1 − p, fp(1) = p. Example: When tossing a coin such that
Pr[heads] = p, random variable R is equal to 1 if we get a heads (and equal to 0 otherwise). In
this case, R follows the Bernoulli distribution i.e. R ∼ Ber(p).

Uniform Distribution: If R : S → V , then for all v ∈ V , f (v) = 1/|V |. Example: When
throwing an n-sided die, random variable R is the number that comes up on the die.
V = {1, 2, . . . , n}. In this case, R follows the Uniform distribution i.e.
R ∼ Uniform{1, 2, . . . , n}.

Binomial Distribution: fn,p(k) =
(
n
k

)
pk(1 − p)n−k . Example: When tossing n independent

coins such that Pr[heads] = p, random variable R is the number of heads in n coin tosses. In
this case, R follows the Binomial distribution i.e. R ∼ Bin(n, p).

Geometric Distribution: fp(k) = (1 − p)k−1p. Example: When repeatedly tossing a coin such
that Pr[heads] = p, random variable R is the number of tosses needed to get the first heads. In
this case, R follows the Geometric distribution i.e. R ∼ Geo(p).
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Wrapping up

Expectation/mean of a random variable R is denoted by E[R] and “summarizes” its distribution.
Formally, E[R] :=

∑
ω∈S Pr[ω]R[ω]

Alternate definition of expectation: E[R] =
∑

x∈Range(R) x Pr[R = x ].

Expectation of transformed r.v’s: For a random variable X : S → V and a function
g : V → R, we define E[g(X )] as follows: E[g(X )] :=

∑
x∈Range(X ) g(x) Pr[X = x ]

Linearity of Expectation: For n random variables R1,R2, . . . ,Rn and constants a1, a2, . . . , an,
b1, b2, . . . , bn, E

[∑n
i=1 aiRi + bi

]
=

∑n
i=1 ai E[Ri ] + bi .

Conditional Expectation: For random variable R, the expected value of R conditioned on an
event A is given by E[R|A] =

∑
x∈Range(R) x Pr[R = x |A]

Law of Total Expectation: If R is a random variable S → V and events A1,A2, . . .An form a
partition of the sample space, then, E[R] =

∑
i E[R|Ai ] Pr[Ai ].
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Wrapping up

Independent random variables: We define two random variables R1 and R2 to be independent
if for all x1 ∈ Range(R1) and x2 ∈ Range(R2), events [R1 = x1] and [R2 = x2] are independent.
More formally,

Pr[(R1 = x1) ∩ (R2 = x2)] = Pr[(R1 = x1)] Pr[(R2 = x2)]

Independent random variables: Two random variables R1 and R2 are independent if for all
x1 ∈ Range(R1) and x2 ∈ Range(R2),

Pr[(R1 = x1)|(R2 = x2)] = Pr[(R1 = x1)]

Pr[(R2 = x2)|(R1 = x1)] = Pr[(R2 = x2)]

Expectation of product of r.v’s: For two r.v’s R1 and R2,
E[R1 R2] =

∑
x∈Range(R1R2)

x Pr[R1R2 = x ].

Expectation of product of independent r.v’s: For independent r.v’s R1 and R2,
E[R1 R2] = E[R1]E[R2].
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Wrapping up

Joint distribution between r.v’s X and Y can be specified by its joint PDF as follows:
PDFX ,Y [x , y ] = Pr[X = x ∩ Y = y ].

If X and Y are independent random variables, PDFX ,Y [x , y ] = PDFX [x ]PDFY [y ].

Marginalization: We can obtain the distribution for each r.v. from the joint distribution by
marginalizing over the other r.v’s i.e. PDFX [x ] =

∑
i PDFX ,Y [x , yi ].

Variance: Standard way to measure the deviation from the mean. For r.v. X ,
Var[X ] = E[(X − E[X ])2] =

∑
x∈Range(X )(x − µ)2 Pr[X = x ] where µ := E[X ].

Alternate definition of variance: Var[X ] = E[X 2]− µ2 = E[X 2]− (E[X ])2.

Standard Deviation: For r.v. X , the standard deviation of X is defined as
σX :=

√
Var[X ] =

√
E[X 2]− (E[X ])2.
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Wrapping up

Properties of variance: For constants a, b and r.v. R, Var[aR + b] = a2Var[R].

Pairwise Independence of r.v’s: Random variables R1,R2,R3, . . .Rn are pairwise independent
if for any pair Ri and Rj , for x ∈ Range(Ri ) and y ∈ Range(Rj),
Pr[(Ri = x) ∩ (Rj = y)] = Pr[Ri = x ] Pr[Rj = y ].

Linearity of variance for pairwise independent r.v’s: If R1, . . . ,Rn are pairwise independent,
Var[R1 + R2 + . . .Rn] =

∑n
i=1 Var[Ri ].

Properties of variance: If R1, . . . ,Rn are pairwise independent, for constants a1, a2, . . . an and
b1, b2, . . . bn, Var[

∑n
i=1 aiRi + bi ] =

∑n
i=1 a

2
i Var[Ri ].
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Wrapping up

Covariance: For two random variables R and S , the covariance between R and S is defined as:
Cov[R,S ] = E[(R − E[R]) (S − E[S ])] = E[RS ]− E[R]E[S ].

Properties of covariance: If R and S are independent r.v’s, E[RS ] = E[R]E[S ] and
Cov[R,S ] = 0. Cov[R,R] = Var[R]. Cov[R,S ] = Cov[S ,R].

Variance of sum of r.v’s: For r.v’s R1,R2, . . . ,Rn,
Var

[∑n
i=1 Ri

]
=

∑n
i=1 Var[Ri ] + 2

∑
1≤i<j≤n Cov[Ri ,Rj ].

If Ri and Rj are pairwise independent, Cov[Ri ,Rj ] = 0 and Var
[∑n

i=1 Ri

]
=

∑n
i=1 Var[Ri ].

Correlation: For two r.v’s R1 and R2, the correlation between R1 and R2 is defined as
Corr[R1,R2] =

Cov[R1,R2]√
Var[R1]Var[R2]

. Corr[R1,R2] ∈ [−1, 1] and indicates the strength of the

relationship between R1 and R2.
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Wrapping up

Bernoulli: If R ∼ Bernoulli(p), E[R] = p and Var[R] = p (1 − p).

Uniform: If R ∼ Uniform({v1, . . . , vn}), E[R] = v1+v2+...+vn
n and

Var[R] = [v2
1+v2

2+...v2
n ]

n −
(

[v1+v2+...vn]
n

)2
.

Binomial: If R ∼ Bin(n, p), E[R] = np and Var[R] = n p (1 − p).

Geometric: If R ∼ Geo(p), E[R] = 1
p and Var[R] = 1−p

p2 .
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Wrapping up

Tail inequalities bound the probability that the r.v. takes a value much different from its mean.

Markov’s Theorem: If X is a non-negative random variable, then for all x > 0,
Pr[X ≥ x ] ≤ E[X ]

x .

Chebyshev’s Theorem: For a r.v. X and all x > 0, Pr[|X − E[X ]| ≥ x ] ≤ Var[X ]
x2 .

Weak Law of Large Numbers: Let G1,G2, . . . ,Gn be pairwise independent variables with the
same mean µ and (finite) standard deviation σ. Define Tn :=

∑n
i=1 Gi

n , then for every ϵ > 0,
limn→∞ Pr[|Tn − µ| ≤ ϵ] = 1.

Chernoff Bound: If T1,T2, . . . ,Tn are mutually independent r.v’s such that 0 ≤ Ti ≤ 1 for all i .
If T :=

∑n
i=1 Ti , for all c ≥ 1 and β(c) := c ln(c)− c + 1, Pr[T ≥ cE[T ]] ≤ exp(−β(c)E[T ]).

Two-sided Chernoff Bound: Pr [|T − E[T ]| ≥ cE[T ]] ≤ 2 exp
(

−c2 E[T ]
3

)
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Wrapping up

The distribution of a continuous r.v. R is completely specified by its PDF fR : R → R+ and CDF
FR : R → [0, 1].

Probability Density Function: For all u, fR(u) ≥ 0 and satisfies Pr[R ∈ [a, b]] =
∫ b

a
fR(u) du.∫∞

−∞ fR(u) du = 1.

Cumulative Distribution Function: For all u, FR(u) := Pr[R ≤ u] =
∫ u

−∞ fR(u) du and
satisfies: limu→−∞ FR(u) = 0 and limu→∞ FR(u) = 1.

PDF and CDF: For any continuous r.v. R, dFR (v)
dv =

d
∫ v
−∞ fR (u) du

dv = fR(v).

Expectation and Variance: For a continuous r.v. R, E[R] =
∫∞
−∞ u fR(u) du and

Var[R] = (
∫∞
−∞ u2 fR(u) du)− (

∫∞
−∞ u fR(u) du)

2.
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Wrapping up

Continuous uniform distribution: If R ∼ Uniform[a, b], for all u ∈ [a, b], fR(u) = 1
b−a and

fR(u) = 0 if u /∈ [a, b]. ∀u ∈ [a, b], FR(u) =
u−a
b−a . FR(u) = 0 if u < a and FR(u) = 1 if u > b.

Expectation and Variance for the continuous uniform distribution: If R ∼ Uniform[a, b],
E[R] = b+a

2 and Var[R] = (b−a)2

12 .

Standard Normal Distribution: Random variable R follows the standard normal distribution i.e.
X ∼ N (0, 1) if fR(u) = Φ(u) := 1√

2π
exp

(
−u2

2

)
.

Normal Distribution: Random variable R follows the Normal distribution i.e. R ∼ N (µ, σ2) if
fR(x) =

1√
2πσ2 exp

(
−(x−µ)2

2σ2

)
.

Expectation and Variance for the normal distribution: If R ∼ N (µ, σ2), E[R] = µ and
Var[R] = σ2.

Standardizing a Gaussian: If X ∼ N (µ, σ2), then Z = X−µ
σ ∼ N (0, 1).

Sum of independent Gaussian r.v’s: If X1,X2, . . . ,Xn are mutually independent random
variables, and Xi ∼ N (µi , σ

2
i ), then if X =

∑n
i=1 Xi , then X ∼ N

(∑n
i=1 µi ,

∑n
i=1 σ

2
i

)
. 22



Wrapping up

Central Limit Theorem: For independent random variables X1,X2, . . . ,Xn with finite mean
µ := E[Xi ] and finite variance σ2 := Var[Xi ], if X = X1 + X2 + . . .+ Xn and Y := X−nµ√

nσ
(such

that E[Y ] = 1 and Var[Y ] = 1), then, for all t,
limn→∞ FY (t) = limn→∞ Pr[Y ≤ t] = Φ(t) = Pr[N (0, 1) ≤ t] =

∫ t

−∞
1√
2π

exp
(
− u2

2

)
du.

CLT holds for any distribution of the Xi ’s. (given that the mean and variances are bounded),
but is only an asymptotic result (only true as n → ∞).

In practice, for large n (when n ⪆ 30), the CLT is a powerful tool – by bounding the CDF of a
Gaussian, we can obtain a handle on the distribution of Y and hence X . It can thus be used as
an alternate to the tail inequalities we discussed earlier.

Berry-Esseen Theorem: For independent random variables X1,X2, . . . ,Xn with finite mean
µ := E[Xi ] and finite variance σ2 := Var[Xi ], if X = X1 + X2 + . . .+ Xn and Y := X−nµ√

nσ
(such

that E[Y ] = 1 and Var[Y ] = 1) and β := E[|X ]|3] < ∞, then, for all t,
|FY (t)− Φ(t)| ≤ O

(
β√
n

)
.
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What’s Next?

STAT 271: Probability and Statistics for Computing Science (Offered in Fall’22)

More continuous distributions and random variables

Sampling and Parameter estimation

Linear Regression

Hypothesis testing

Analysis of Variance
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Questions?
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