CMPT 210: Probability and Computation

Lecture 24

Sharan Vaswani

August 5, 2022

Final Exam is on August 14 (Sunday) from 12 pm - 3 pm in AQ 3005.

Scope of the Final:

- Syllabus includes everything that we have covered (Lectures 1 24 and Assignments 1-4).
- For continuous r.v's, there will be only very basic questions (no difficult integrals).

You are allowed to bring a A4-sized, two-sided, hand-written formula sheet for the Final. Go through the slides/assignments and (Meyer, Lehman, Leighton) to prepare. Final will be "easy" – if your concepts are clear, you should be able to get full marks. Office hours next week: Tuesday, 9 August, 11 am - 1 pm & Thursday, 11 August, 9 am - 10 am. The distribution of a continuous r.v. R is completely specified by its PDF $f_R : \mathbb{R} \to \mathbb{R}_+$ and CDF $F_R : \mathbb{R} \to [0, 1]$.

Probability Density Function: For all u, $f_R(u) \ge 0$ and satisfies $\Pr[R \in [a, b]] = \int_a^b f_R(u) du$. $\int_{-\infty}^{\infty} f_R(u) du = 1$.

Cumulative Distribution Function: For all u, $F_R(u) := \Pr[R \le u] = \int_{-\infty}^u f_R(u) du$ and satisfies: $\lim_{u\to\infty} F_R(u) = 0$ and $\lim_{u\to\infty} F_R(u) = 1$.

PDF and CDF: For any continuous r.v. *R*, $\frac{dF_R(v)}{dv} = \frac{d\int_{-\infty}^v f_R(u) du}{dv} = f_R(v)$.

Expectation and Variance: For a continuous r.v. R, $\mathbb{E}[R] = \int_{-\infty}^{\infty} u f_R(u) du$ and $\operatorname{Var}[R] = (\int_{-\infty}^{\infty} u^2 f_R(u) du) - (\int_{-\infty}^{\infty} u f_R(u) du)^2$.

Continuous uniform distribution: If $R \sim \text{Uniform}[a, b]$, for all $u \in [a, b]$, $f_R(u) = \frac{1}{b-a}$ and $f_R(u) = 0$ if $u \notin [a, b]$. $\forall u \in [a, b]$, $F_R(u) = \frac{u-a}{b-a}$. $F_R(u) = 0$ if u < a and $F_R(u) = 1$ if u > b.

Expectation and Variance for the continuous uniform distribution: If $R \sim \text{Uniform}[a, b]$, $\mathbb{E}[R] = \frac{b+a}{2}$ and $\text{Var}[R] = \frac{(b-a)^2}{12}$.

Standard Normal Distribution: Random variable *R* follows the standard normal distribution i.e. $X \sim \mathcal{N}(0,1)$ if $f_R(u) = \Phi(u) := \frac{1}{\sqrt{2\pi}} \exp\left(\frac{-u^2}{2}\right)$.

Normal Distribution: Random variable *R* follows the Normal distribution i.e. $R \sim \mathcal{N}(\mu, \sigma^2)$ if $f_R(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(\frac{-(x-\mu)^2}{2\sigma^2}\right)$.

Expectation and Variance for the normal distribution: If $R \sim \mathcal{N}(\mu, \sigma^2)$, $\mathbb{E}[R] = \mu$ and $Var[R] = \sigma^2$.

Standardizing a Gaussian: If $X \sim \mathcal{N}(\mu, \sigma^2)$, then $Z = \frac{X - \mu}{\sigma} \sim \mathcal{N}(0, 1)$.

Questions?

Sum of independent Gaussian r.v's: If $X_1, X_2, ..., X_n$ are mutually independent random variables, and $X_i \sim \mathcal{N}(\mu_i, \sigma_i^2)$, then if $X = X_1 + X_2 + ... + X_n$, then $X \sim \mathcal{N}\left(\sum_{i=1}^n \mu_i, \sum_{i=1}^n \sigma_i^2\right)$.

As a check, note that by the linearity of expectation, $\mathbb{E}[X] = \mathbb{E}\left[\sum_{i=1}^{n} X_i\right] = \sum_{i=1}^{n} \mathbb{E}[X_i] = \sum_{i=1}^{n} \mu_i.$

Similarly, by the linearity of variance of pairwise independent random variables, $\operatorname{Var}\left[\sum_{i=1}^{n} X_{i}\right] = \sum_{i=1}^{n} \operatorname{Var}[X_{i}] = \sum_{i=1}^{n} \sigma_{i}^{2}$.

The above statement is much stronger – not only does it quantify the mean and variance of the sum of independent Gaussian r.v's, it also says that the resulting distribution of X is also a Gaussian!

We have seen that the normal distribution can be seen as the limit of the Binomial distribution – specifically, for large *n*, if X_1, X_2, \ldots, X_n are Bernoulli random variables with parameter *p*, then for $X = X_1 + X_2 + \ldots + X_n$, $f_X(x) \approx \sqrt{\frac{1}{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$ where $\mu = \mathbb{E}[X] = np$ and $\sigma^2 = \operatorname{Var}[X] = np(1-p)$.

We also saw that if X_1, X_2, \ldots, X_n are independent Gaussian r.v's (with mean μ_i and variance σ_i^2) and $X = X_1 + X_2 + \ldots + X_n$, then, $f_X(x) = \sqrt{\frac{1}{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$ where $\mu = \sum_i \mu_i$ and $\sigma^2 = \sum_i \sigma_i^2$.

Hence, in both cases, by "standardizing" X i.e. for $Y := \frac{X-\mu}{\sigma}$, $Y \sim \mathcal{N}(0,1)$.

Central Limit Theorem

Central Limit Theorem: For independent random variables X_1, X_2, \ldots, X_n with finite mean $\mu := \mathbb{E}[X_i]$ and finite variance $\sigma^2 := \operatorname{Var}[X_i]$, if $X = X_1 + X_2 + \ldots + X_n$ and $Y := \frac{X - n\mu}{\sqrt{n\sigma}}$ (such that $\mathbb{E}[Y] = 1$ and $\operatorname{Var}[Y] = 1$), then, for all t,

$$\lim_{n\to\infty} F_Y(t) = \lim_{n\to\infty} \Pr[Y \le t] = \Phi(t) = \Pr[\mathcal{N}(0,1) \le t] = \int_{-\infty}^t \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{u^2}{2}\right) \, du$$

This is true for **any** distribution of the X_i 's! (given that the mean and variances are bounded), but is only an asymptotic result (only true as $n \to \infty$).

Compare this to the Chernoff bound that is non-asymptotic (holds for all n and has an explicit dependence on n) (and requires the $X_i \in [0, 1]$). Chernoff only bounds the probability of deviation from the mean, while CLT is a statement about the whole distribution.

Compare this to the weak law of large numbers that proves that $\lim_{n\to\infty} X/n = \mu$ and is an asymptotic statement about the mean. On the other hand, CLT is a statement about the whole distribution.

Central Limit Theorem

In practice, for large n (when $n \gtrsim 30$), the CLT is a powerful tool – by bounding the CDF of a Gaussian, we can obtain a handle on the distribution of Y and hence X. It can thus be used as an alternate to the tail inequalities we discussed earlier.

Under additional assumptions, CLT can be modified to give a non-asymptotic bound in the form of the Berry-Esseen Theorem.

Berry-Esseen Theorem: For independent random variables X_1, X_2, \ldots, X_n with finite mean $\mu := \mathbb{E}[X_i]$ and finite variance $\sigma^2 := \operatorname{Var}[X_i]$, if $X = X_1 + X_2 + \ldots + X_n$ and $Y := \frac{X - n\mu}{\sqrt{n\sigma}}$ (such that $\mathbb{E}[Y] = 1$ and $\operatorname{Var}[Y] = 1$) and $\beta := \mathbb{E}[|X]|^3] < \infty$, then, for all t,

$$|F_Y(t) - \Phi(t)| \leq O\left(rac{eta}{\sqrt{n}}
ight).$$

Hence, under the additional assumption that the third moment is bounded, the distribution of Y approaches that of the standard normal distribution at an $O(1/\sqrt{n})$ rate.

The Berry-Esseen theorem gives some justification why the CLT works so well for the well-behaved real distributions even for finite n.

Questions?

Sample (outcome) space S: Nonempty (countable) set of possible outcomes.

Outcome $\omega \in S$: Possible "thing" that can happen.

Event *E*: Any subset of the sample space.

Probability function on a sample space S is a total function $Pr : S \to [0, 1]$. For any $\omega \in S$,

$$0 \le \Pr[\omega] \le 1$$
 ; $\sum_{\omega \in S} \Pr[\omega] = 1$; $\Pr[E] = \sum_{\omega \in E} \Pr[\omega]$

Union: For mutually exclusive events E_1, E_2, \ldots, E_n , $\Pr[E_1 \cup E_2 \cup \ldots E_n] = \Pr[E_1] + \Pr[E_2] + \ldots + \Pr[E_n]$.

Complement rule: $\Pr[E] = 1 - \Pr[E^c]$

Inclusion-Exclusion rule: For any two events $E, F, \Pr[E \cup F] = \Pr[E] + \Pr[F] - \Pr[E \cap F]$. **Union Bound**: For any events $E_1, E_2, E_3, \ldots, E_n, \Pr[E_1 \cup E_2 \cup E_3 \ldots \cup E_n] \leq \sum_{i=1}^n \Pr[E_i]$. **Uniform probability space**: A probability space is said to be uniform if $\Pr[\omega]$ is the same for every outcome $\omega \in S$. In this case, $\Pr[E] = \frac{|E|}{|S|}$. **Conditional Probability**: For events *E* and *F*, probability of event *E* conditioned on *F* is given by $\Pr[E|F]$ and can be computed as $\Pr[E|F] = \frac{\Pr[E \cap F]}{\Pr[F]}$.

Probability rules with conditioning: For the complement E^c , $\Pr[E^c|F] = 1 - \Pr[E|F]$.

Conditional Probability for multiple events: $\Pr[E_1 \cap E_2 \cap E_3] = \Pr[E_1] \Pr[E_2|E_1] \Pr[E_3|E_1 \cap E_2].$

Bayes rule: For events *E* and *F* if $Pr[E] \neq 0$, $Pr[F|E] = \frac{Pr[E|F]Pr[F]}{Pr[E]}$.

Law of Total Probability: For events *E* and *F*, $Pr[E] = Pr[E|F] Pr[F] + Pr[E|F^c] Pr[F^c]$.

Independent Events: Events *E* and *F* are said to be independent, if knowledge that *F* has occurred does not change the probability that *E* occurs, i.e. Pr[E|F] = Pr[E] and $Pr[E \cap F] = Pr[E] Pr[F]$.

Pairwise Independence: Events E_1, E_2, \ldots, E_n are pairwise independent, if for *every* pair of events E_i and E_j $(i \neq j)$, $\Pr[E_i|E_j] = \Pr[E_i]$ and $\Pr[E_i \cap E_j] = \Pr[E_i] \Pr[E_j]$.

Mutual Independence: Events E_1, E_2, \ldots, E_n are mutually independent, if for *every* subset of events, the probability that all the selected events occur equals the product of the probabilities of the selected events. Formally, for every subset $S \subseteq \{1, 2, \ldots, n\}$, $\Pr[\cap_{i \in S} E_i] = \prod_{i \in S} \Pr[E_i]$.

Random variable: A random "variable" R on a probability space is a total function whose domain is the sample space S. The codomain is denoted by V (usually a subset of the real numbers), meaning that $R: S \to V$.

Indicator Random Variables: An indicator random variable corresponding to an event E is denoted as \mathcal{I}_E and is defined such that for $\omega \in E$, $\mathcal{I}_E[\omega] = 1$ and for $\omega \notin E$, $\mathcal{I}_E[\omega] = 0$.

Probability density function (PDF): Let *R* be a random variable with codomain *V*. The probability density function of *R* is the function $PDF_R : V \to [0, 1]$, such that $PDF_R[x] = Pr[R = x]$ if $x \in Range(R)$ and equal to zero if $x \notin Range(R)$.

$$\sum_{x \in V} \mathsf{PDF}_R[x] = \sum_{x \in \mathsf{Range}(\mathsf{R})} \mathsf{Pr}[R = x] = 1.$$

Cumulative distribution function (CDF): The cumulative distribution function of *R* is the function $CDF_R : \mathbb{R} \to [0, 1]$, such that $CDF_R[x] = Pr[R \le x]$.

Distribution over a random variable can be fully specified using the cumulative distribution function (CDF) (usually denoted by F). The corresponding probability density function (PDF) is denoted by f.

Wrapping up

Bernoulli Distribution: $f_p(0) = 1 - p$, $f_p(1) = p$. Example: When tossing a coin such that Pr[heads] = p, random variable R is equal to 1 if we get a heads (and equal to 0 otherwise). In this case, R follows the Bernoulli distribution i.e. $R \sim Ber(p)$.

Uniform Distribution: If $R : S \to V$, then for all $v \in V$, f(v) = 1/|V|. *Example*: When throwing an *n*-sided die, random variable R is the number that comes up on the die. $V = \{1, 2, ..., n\}$. In this case, R follows the Uniform distribution i.e. $R \sim \text{Uniform}\{1, 2, ..., n\}$.

Binomial Distribution: $f_{n,p}(k) = {n \choose k} p^k (1-p)^{n-k}$. Example: When tossing *n* independent coins such that $\Pr[\text{heads}] = p$, random variable *R* is the number of heads in *n* coin tosses. In this case, *R* follows the Binomial distribution i.e. $R \sim Bin(n, p)$.

Geometric Distribution: $f_p(k) = (1-p)^{k-1}p$. Example: When repeatedly tossing a coin such that $\Pr[\text{heads}] = p$, random variable R is the number of tosses needed to get the first heads. In this case, R follows the Geometric distribution i.e. $R \sim \text{Geo}(p)$.

Expectation/mean of a random variable R is denoted by $\mathbb{E}[R]$ and "summarizes" its distribution. Formally, $\mathbb{E}[R] := \sum_{\omega \in S} \Pr[\omega] R[\omega]$

Alternate definition of expectation: $\mathbb{E}[R] = \sum_{x \in \text{Range}(R)} x \Pr[R = x].$

Expectation of transformed r.v's: For a random variable $X : S \to V$ and a function $g : V \to \mathbb{R}$, we define $\mathbb{E}[g(X)]$ as follows: $\mathbb{E}[g(X)] := \sum_{x \in \text{Range}(X)} g(x) \Pr[X = x]$

Linearity of Expectation: For *n* random variables R_1, R_2, \ldots, R_n and constants a_1, a_2, \ldots, a_n , b_1, b_2, \ldots, b_n , $\mathbb{E}\left[\sum_{i=1}^n a_i R_i + b_i\right] = \sum_{i=1}^n a_i \mathbb{E}[R_i] + b_i$.

Conditional Expectation: For random variable *R*, the expected value of *R* conditioned on an event A is given by $\mathbb{E}[R|A] = \sum_{x \in \text{Range}(R)} x \Pr[R = x|A]$

Law of Total Expectation: If *R* is a random variable $S \to V$ and events A_1, A_2, \ldots, A_n form a partition of the sample space, then, $\mathbb{E}[R] = \sum_i \mathbb{E}[R|A_i] \Pr[A_i]$.

Wrapping up

Independent random variables: We define two random variables R_1 and R_2 to be independent if for all $x_1 \in \text{Range}(R_1)$ and $x_2 \in \text{Range}(R_2)$, events $[R_1 = x_1]$ and $[R_2 = x_2]$ are independent. More formally,

$$\Pr[(R_1 = x_1) \cap (R_2 = x_2)] = \Pr[(R_1 = x_1)] \Pr[(R_2 = x_2)]$$

Independent random variables: Two random variables R_1 and R_2 are independent if for all $x_1 \in \text{Range}(R_1)$ and $x_2 \in \text{Range}(R_2)$,

$$\Pr[(R_1 = x_1) | (R_2 = x_2)] = \Pr[(R_1 = x_1)]$$

$$\Pr[(R_2 = x_2) | (R_1 = x_1)] = \Pr[(R_2 = x_2)]$$

Expectation of product of r.v's: For two r.v's R_1 and R_2 , $\mathbb{E}[R_1 R_2] = \sum_{x \in \text{Range}(R_1 R_2)} x \Pr[R_1 R_2 = x].$

Expectation of product of independent r.v's: For independent r.v's R_1 and R_2 , $\mathbb{E}[R_1 R_2] = \mathbb{E}[R_1] \mathbb{E}[R_2]$.

Joint distribution between r.v's X and Y can be specified by its joint PDF as follows: PDF_{X,Y}[x, y] = Pr[X = x \cap Y = y].

If X and Y are independent random variables, $PDF_{X,Y}[x, y] = PDF_X[x] PDF_Y[y]$.

Marginalization: We can obtain the distribution for each r.v. from the joint distribution by marginalizing over the other r.v's i.e. $PDF_X[x] = \sum_i PDF_{X,Y}[x, y_i]$.

Variance: Standard way to measure the deviation from the mean. For r.v. *X*, $Var[X] = \mathbb{E}[(X - \mathbb{E}[X])^2] = \sum_{x \in Range(X)} (x - \mu)^2 Pr[X = x]$ where $\mu := \mathbb{E}[X]$. **Alternate definition of variance**: $Var[X] = \mathbb{E}[X^2] - \mu^2 = \mathbb{E}[X^2] - (\mathbb{E}[X])^2$.

Standard Deviation: For r.v. X, the standard deviation of X is defined as $\sigma_X := \sqrt{\operatorname{Var}[X]} = \sqrt{\mathbb{E}[X^2] - (\mathbb{E}[X])^2}.$

Properties of variance: For constants *a*, *b* and r.v. *R*, $Var[aR + b] = a^2Var[R]$.

Pairwise Independence of r.v's: Random variables $R_1, R_2, R_3, ..., R_n$ are pairwise independent if for any pair R_i and R_j , for $x \in \text{Range}(R_i)$ and $y \in \text{Range}(R_j)$, $\Pr[(R_i = x) \cap (R_j = y)] = \Pr[R_i = x] \Pr[R_j = y].$

Linearity of variance for pairwise independent r.v's: If R_1, \ldots, R_n are pairwise independent, $Var[R_1 + R_2 + \ldots R_n] = \sum_{i=1}^n Var[R_i].$

Properties of variance: If R_1, \ldots, R_n are pairwise independent, for constants a_1, a_2, \ldots, a_n and b_1, b_2, \ldots, b_n , $Var[\sum_{i=1}^n a_i R_i + b_i] = \sum_{i=1}^n a_i^2 Var[R_i]$.

Covariance: For two random variables *R* and *S*, the covariance between *R* and *S* is defined as: $Cov[R, S] = \mathbb{E}[(R - \mathbb{E}[R])(S - \mathbb{E}[S])] = \mathbb{E}[RS] - \mathbb{E}[R] \mathbb{E}[S].$

Properties of covariance: If *R* and *S* are independent r.v's, $\mathbb{E}[RS] = \mathbb{E}[R]\mathbb{E}[S]$ and Cov[R, S] = 0. Cov[R, R] = Var[R]. Cov[R, S] = Cov[S, R].

Variance of sum of r.v's: For r.v's R_1, R_2, \ldots, R_n , Var $\left[\sum_{i=1}^n R_i\right] = \sum_{i=1}^n \operatorname{Var}[R_i] + 2 \sum_{1 \le i < j \le n} \operatorname{Cov}[R_i, R_j]$.

If R_i and R_j are pairwise independent, $Cov[R_i, R_j] = 0$ and $Var\left[\sum_{i=1}^n R_i\right] = \sum_{i=1}^n Var[R_i]$.

Correlation: For two r.v's R_1 and R_2 , the correlation between R_1 and R_2 is defined as $\operatorname{Corr}[R_1, R_2] = \frac{\operatorname{Cov}[R_1, R_2]}{\sqrt{\operatorname{Var}[R_1]\operatorname{Var}[R_2]}}$. $\operatorname{Corr}[R_1, R_2] \in [-1, 1]$ and indicates the strength of the relationship between R_1 and R_2 .

Bernoulli: If $R \sim \text{Bernoulli}(p)$, $\mathbb{E}[R] = p$ and Var[R] = p(1-p). **Uniform**: If $R \sim \text{Uniform}(\{v_1, \dots, v_n\})$, $\mathbb{E}[R] = \frac{v_1 + v_2 + \dots + v_n}{n}$ and $\text{Var}[R] = \frac{[v_1^2 + v_2^2 + \dots + v_n^2]}{n} - \left(\frac{[v_1 + v_2 + \dots + v_n]}{n}\right)^2$. **Binomial**: If $R \sim \text{Bin}(n, p)$, $\mathbb{E}[R] = np$ and Var[R] = np(1-p). **Geometric**: If $R \sim \text{Geo}(p)$, $\mathbb{E}[R] = \frac{1}{p}$ and $\text{Var}[R] = \frac{1-p}{p^2}$. **Tail inequalities** bound the probability that the r.v. takes a value much different from its mean.

Markov's Theorem: If X is a non-negative random variable, then for all x > 0, $\Pr[X \ge x] \le \frac{\mathbb{E}[X]}{x}$.

Chebyshev's Theorem: For a r.v. X and all x > 0, $\Pr[|X - \mathbb{E}[X]| \ge x] \le \frac{\operatorname{Var}[X]}{x^2}$.

Weak Law of Large Numbers: Let G_1, G_2, \ldots, G_n be pairwise independent variables with the same mean μ and (finite) standard deviation σ . Define $T_n := \frac{\sum_{i=1}^n G_i}{n}$, then for every $\epsilon > 0$, $\lim_{n\to\infty} \Pr[|T_n - \mu| \le \epsilon] = 1$.

Chernoff Bound: If $T_1, T_2, ..., T_n$ are mutually independent r.v's such that $0 \le T_i \le 1$ for all *i*. If $T := \sum_{i=1}^n T_i$, for all $c \ge 1$ and $\beta(c) := c \ln(c) - c + 1$, $\Pr[T \ge c\mathbb{E}[T]] \le \exp(-\beta(c)\mathbb{E}[T])$. **Two-sided Chernoff Bound**: $\Pr[|T - \mathbb{E}[T]| \ge c\mathbb{E}[T]] \le 2\exp(\frac{-c^2\mathbb{E}[T]}{3})$ The distribution of a continuous r.v. R is completely specified by its PDF $f_R : \mathbb{R} \to \mathbb{R}_+$ and CDF $F_R : \mathbb{R} \to [0, 1]$.

Probability Density Function: For all u, $f_R(u) \ge 0$ and satisfies $\Pr[R \in [a, b]] = \int_a^b f_R(u) du$. $\int_{-\infty}^{\infty} f_R(u) du = 1$.

Cumulative Distribution Function: For all u, $F_R(u) := \Pr[R \le u] = \int_{-\infty}^u f_R(u) du$ and satisfies: $\lim_{u\to\infty} F_R(u) = 0$ and $\lim_{u\to\infty} F_R(u) = 1$.

PDF and CDF: For any continuous r.v. *R*, $\frac{dF_R(v)}{dv} = \frac{d\int_{-\infty}^v f_R(u) du}{dv} = f_R(v)$.

Expectation and Variance: For a continuous r.v. R, $\mathbb{E}[R] = \int_{-\infty}^{\infty} u f_R(u) du$ and $\operatorname{Var}[R] = (\int_{-\infty}^{\infty} u^2 f_R(u) du) - (\int_{-\infty}^{\infty} u f_R(u) du)^2$.

Wrapping up

Continuous uniform distribution: If $R \sim \text{Uniform}[a, b]$, for all $u \in [a, b]$, $f_R(u) = \frac{1}{b-a}$ and $f_R(u) = 0$ if $u \notin [a, b]$. $\forall u \in [a, b]$, $F_R(u) = \frac{u-a}{b-a}$. $F_R(u) = 0$ if u < a and $F_R(u) = 1$ if u > b.

Expectation and Variance for the continuous uniform distribution: If $R \sim \text{Uniform}[a, b]$, $\mathbb{E}[R] = \frac{b+a}{2}$ and $\text{Var}[R] = \frac{(b-a)^2}{12}$.

Standard Normal Distribution: Random variable *R* follows the standard normal distribution i.e. $X \sim \mathcal{N}(0,1)$ if $f_R(u) = \Phi(u) := \frac{1}{\sqrt{2\pi}} \exp\left(\frac{-u^2}{2}\right)$.

Normal Distribution: Random variable *R* follows the Normal distribution i.e. $R \sim \mathcal{N}(\mu, \sigma^2)$ if $f_R(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(\frac{-(x-\mu)^2}{2\sigma^2}\right)$.

Expectation and Variance for the normal distribution: If $R \sim \mathcal{N}(\mu, \sigma^2)$, $\mathbb{E}[R] = \mu$ and $Var[R] = \sigma^2$.

Standardizing a Gaussian: If $X \sim \mathcal{N}(\mu, \sigma^2)$, then $Z = \frac{X - \mu}{\sigma} \sim \mathcal{N}(0, 1)$.

Sum of independent Gaussian r.v's: If $X_1, X_2, ..., X_n$ are mutually independent random variables, and $X_i \sim \mathcal{N}(\mu_i, \sigma_i^2)$, then if $X = \sum_{i=1}^n X_i$, then $X \sim \mathcal{N}(\sum_{i=1}^n \mu_i, \sum_{i=1}^n \sigma_i^2)$.

Wrapping up

Central Limit Theorem: For independent random variables X_1, X_2, \ldots, X_n with finite mean $\mu := \mathbb{E}[X_i]$ and finite variance $\sigma^2 := \operatorname{Var}[X_i]$, if $X = X_1 + X_2 + \ldots + X_n$ and $Y := \frac{X - n\mu}{\sqrt{n\sigma}}$ (such that $\mathbb{E}[Y] = 1$ and $\operatorname{Var}[Y] = 1$), then, for all t, $\lim_{n\to\infty} F_Y(t) = \lim_{n\to\infty} \Pr[Y \le t] = \Phi(t) = \Pr[\mathcal{N}(0,1) \le t] = \int_{-\infty}^t \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{u^2}{2}\right) du$.

CLT holds for **any** distribution of the X_i 's. (given that the mean and variances are bounded), but is only an asymptotic result (only true as $n \to \infty$).

In practice, for large n (when $n \gtrsim 30$), the CLT is a powerful tool – by bounding the CDF of a Gaussian, we can obtain a handle on the distribution of Y and hence X. It can thus be used as an alternate to the tail inequalities we discussed earlier.

Berry-Esseen Theorem: For independent random variables X_1, X_2, \ldots, X_n with finite mean $\mu := \mathbb{E}[X_i]$ and finite variance $\sigma^2 := \operatorname{Var}[X_i]$, if $X = X_1 + X_2 + \ldots + X_n$ and $Y := \frac{X - n\mu}{\sqrt{n\sigma}}$ (such that $\mathbb{E}[Y] = 1$ and $\operatorname{Var}[Y] = 1$) and $\beta := \mathbb{E}[|X]|^3 < \infty$, then, for all t, $|F_Y(t) - \Phi(t)| \le O\left(\frac{\beta}{\sqrt{n}}\right)$.

STAT 271: Probability and Statistics for Computing Science (Offered in Fall'22)

- More continuous distributions and random variables
- Sampling and Parameter estimation
- Linear Regression
- Hypothesis testing
- Analysis of Variance

Questions?