CMPT 210: Probability and Computation

Lecture 22

Sharan Vaswani
July 29, 2022

Two-sided Chernoff Bound

Chernoff Bound: Let $T_{1}, T_{2}, \ldots, T_{n}$ be mutually independent r.v's such that $0 \leq T_{i} \leq 1$ for all i. If $T:=\sum_{i=1}^{n} T_{i}$, for all $c \geq 1$ and $\beta(c):=c \ln (c)-c+1$,

$$
\operatorname{Pr}[T \geq c \mathbb{E}[T]] \leq \exp (-\beta(c) \mathbb{E}[T])
$$

Two-sided Chernoff Bound: Bounds the probability that the r.v. T takes values (much) smaller or larger than the mean $\mathbb{E}[T]$:

$$
\operatorname{Pr}[|T-\mathbb{E}[T]| \geq c \mathbb{E}[T]] \leq 2 \exp \left(\frac{-c^{2} \mathbb{E}[T]}{3}\right)
$$

A/B Testing

Fussbook is redesigning their website to try to make it more appealing to users. In order to see if the new redesigned website actually helps, Fussbook decides to do an experiment.

Given m users of the website, let \mathcal{A} be the set of users who engage with the Fussbook posts (liking, sharing, etc) if they are shown the old website. Similarly, \mathcal{B} is the set of users that engage if they are shown the new website.

Define f_{A} (and f_{B}) to be the fraction of users that engage when shown the old (or new website respectively), i.e. $f_{A}:=\frac{|\mathcal{A}|}{m}$ and $f_{B}:=\frac{|\mathcal{B}|}{m}$. We assume that these fractions correspond to the proportion of users that prefer the old website vs the new.

The improvement on switching to the new website is defined in terms of the lift which is equal to $f_{B}-f_{A}$. If $f_{B}-f_{A}>0$, then it makes sense to switch to the new website.

A/B Testing

In order to estimate f_{A} and f_{B} and see if the new website actually helps, Fussbook decides to run an \mathbf{A} / \mathbf{B} test on m users.

```
Algorithm A/B Testing
    1: function ABTest( \(m\) )
    2: \(X_{A}=0, X_{B}=0\{\) Initialize number of users that engaged when shown the old/new website \(\}\)
    3: for \(\mathrm{i}=1,2, \ldots, \mathrm{~m}\) do
    4: \(\quad X_{i} \sim \operatorname{Ber}(1 / 2)\)
    5: if \(X_{i}=1\) then
    6: \(\quad\) Show user \(i\) old website. If user engages, \(X_{A}=X_{A}+1\)
        else
            Show user \(i\) new website. If user engages, \(X_{B}=X_{B}+1\)
        end if
    end for
    return \(\hat{f}_{A}=\frac{2 X_{A}}{m}\) and \(\hat{f}_{B}=\frac{2 X_{B}}{m}\).
```


A/B Testing

Claim: \hat{f}_{A} and \hat{f}_{B} are unbiased estimators of f_{A} and f_{B} respectively, i.e $\mathbb{E}\left[\hat{f}_{A}\right]=f_{A}$ and $\mathbb{E}\left[\hat{f}_{B}\right]=f_{B}$. Note that $X_{A}=\sum_{i \in \mathcal{A}} X_{i}$.

$$
\mathbb{E}\left[\hat{f}_{A}\right]=\mathbb{E}\left[\frac{2 X_{A}}{m}\right]=\frac{2}{m} \mathbb{E}\left[\sum_{i \in \mathcal{A}} X_{i}\right]=\frac{2}{m}\left[\sum_{i \in \mathcal{A}} \mathbb{E}\left[X_{i}\right]\right]=\frac{2}{m}\left[\sum_{i \in \mathcal{A}} \operatorname{Pr}\left[X_{i}=1\right]\right]=\frac{2}{m} \frac{|\mathcal{A}|}{2}=f_{A} .
$$

Similarly, $X_{B}=\sum_{i \in \mathcal{B}}\left(1-X_{i}\right)$.

$$
\mathbb{E}\left[\hat{f}_{B}\right]=\mathbb{E}\left[\frac{2 X_{B}}{m}\right]=\frac{2}{m} \mathbb{E}\left[\sum_{i \in \mathcal{B}}\left(1-X_{i}\right)\right]=\frac{2}{m}\left[\sum_{i \in \mathcal{B}} \mathbb{E}\left[1-X_{i}\right]\right]=\frac{2}{m}\left[\sum_{i \in \mathcal{B}} \operatorname{Pr}\left[X_{i}=0\right]\right]=\frac{2}{m} \frac{|\mathcal{B}|}{2}=f_{B} .
$$

A/B Testing

Claim: With probability 0.95 , the algorithm $\operatorname{ABTest}(\mathrm{m})$ estimates the lift to an error equal to 0.1 if $m \approx 10517$.

$$
\begin{aligned}
\operatorname{Pr}\left[\left|\hat{f}_{A}-f_{A}\right| \geq \epsilon\right] & =\operatorname{Pr}\left[\left|\frac{2 X_{A}}{m}-f_{A}\right| \geq \epsilon\right]=\operatorname{Pr}\left[\left|X_{A}-\frac{m f_{A}}{2}\right| \geq \frac{m \epsilon}{2}\right] \\
& =\operatorname{Pr}[\left|X_{A}-\frac{m f_{A}}{2}\right| \geq \underbrace{\frac{\epsilon}{f_{A}}}_{c} \frac{m f_{A}}{2}] \\
& \leq 2 \exp \left(-\frac{1}{3}\left(\frac{\epsilon}{f_{A}}\right)^{2} \frac{m f_{A}}{2}\right) \quad \text { (Two-sided Chernoff Bound) } \\
& =2 \exp \left(-\frac{\epsilon^{2}}{6} \frac{m}{f_{A}}\right) \leq 2 \exp \left(-\frac{\epsilon^{2} m}{6}\right)
\end{aligned}
$$

(Since $f_{A}<1$ and \exp is a monotonically increasing function.)
Similarly, we can prove that, $\operatorname{Pr}\left[\left|\hat{f}_{B}-f_{B}\right| \geq \epsilon\right] \leq 2 \exp \left(-\frac{\epsilon^{2} m}{6}\right)$.

A/B Testing

By the union-bound for two events A and $B, \operatorname{Pr}[A \cup B] \leq \operatorname{Pr}[A]+\operatorname{Pr}[B]$. Hence,

$$
\left.\begin{array}{rl}
& \operatorname{Pr}\left[\left|\hat{f}_{A}-f_{A}\right| \geq \epsilon \cup\left|\hat{f}_{B}-f_{B}\right| \geq \epsilon\right] \\
\Longrightarrow & \operatorname{Pr}\left[\left|\hat{f}_{A}-f_{A}\right|<\epsilon \cap\left|\hat{e}_{B}-f_{B}\right|<\epsilon\right] \geq 1-4 \exp \left(-\frac{\epsilon^{2} m}{6}\right) \\
6
\end{array}\right)
$$

$$
\begin{aligned}
\text { |estimated lift - true lift } \mid & =\left|\left[\hat{f}_{B}-\hat{f}_{A}\right]-\left[f_{B}-f_{A}\right]\right|=\left|\left[\hat{f}_{B}-f_{B}\right]+\left[f_{A}-\hat{f}_{A}\right]\right| \\
& \leq\left|\left[\hat{f}_{B}-f_{B}\right]\right|+\left|\left[f_{A}-\hat{f}_{A}\right]\right|
\end{aligned}
$$

(Triangle Inequality: For any constants $a, b,|a+b| \leq|a|+|b|$)
$\Longrightarrow \operatorname{Pr}[\mid$ estimated lift - true lift $\mid \leq 2 \epsilon] \geq 1-4 \exp \left(-\frac{\epsilon^{2} m}{6}\right)$.
Proof of Triangle inequality: For any $a, b, a b \leq|a||b|$.
$\Longrightarrow a^{2}+b^{2}+2 a b \leq a^{2}+b^{2}+2|a||b|=|a|^{2}+|b|^{2}+2|a||b|$ (since $\forall x, x^{2}=|x|^{2}$).
$\Longrightarrow(a+b)^{2}=(|(a+b)|)^{2} \leq(|a|+|b|)^{2} \Longrightarrow|a+b| \leq|a|+|b|$.

A/B Testing

In the claim, we want the RHS to be equal to 0.95 and $2 \epsilon=0.1$. Hence,

$$
4 \exp \left(-\frac{\epsilon^{2} m}{6}\right)=0.05 \Longrightarrow m=\frac{6 \ln (80)}{\epsilon^{2}}=\frac{6 \ln (80)}{(0.05)^{2}} \approx 10517
$$

Hence, Fussbook can estimate the lift upto an error of 0.1 accurately with probability 0.95 by running the A / B test on $m \approx 10517$ users.

Questions?

