# CMPT 210: Probability and Computation 

Lecture 21

Sharan Vaswani
July 26, 2022

## Recap

Tail inequalities bound the probability that the r.v. takes a value much different from its mean.
Markov's Theorem: If $X$ is a non-negative random variable, then for all $x>0$, $\operatorname{Pr}[X \geq x] \leq \frac{\mathbb{E}[X]}{x}$.
Chebyshev's Theorem: For a r.v. $X$ and all $x>0, \operatorname{Pr}[|X-\mathbb{E}[X]| \geq x] \leq \frac{\operatorname{Var}[X]}{x^{2}}$.

## Sums of Random Variables

If we know that the r.v $X$ is (i) non-negative and (ii) $\mathbb{E}[X]$, we can use Markov's Theorem to bound the probability of deviation from the mean.

If we know both (i) $\mathbb{E}[X]$ and (ii) $\operatorname{Var}[X]$, we can use Chebyshev's Theorem to bound the probability of deviation.
In many cases (the voter poll example), we know the distribution of the r.v. (for voter poll, $\left.S_{n} \sim \operatorname{Bin}(n, p)\right)$ and can obtain tighter bounds on the deviation from the mean.

Chernoff Bound: Let $T_{1}, T_{2}, \ldots, T_{n}$ be mutually independent $r$.v's such that $0 \leq T_{i} \leq 1$ for all $i$. If $T:=\sum_{i=1}^{n} T_{i}$, for all $c \geq 1$ and $\beta(c):=c \ln (c)-c+1$,

$$
\operatorname{Pr}[T \geq c \mathbb{E}[T]] \leq \exp (-\beta(c) \mathbb{E}[T])
$$

If $T_{i} \sim \operatorname{Ber}(p)$ and are mutually independent, then $T_{i} \in\{0,1\}$ and we can use the Chernoff bound to bound the deviation from the mean for $T \sim \operatorname{Bin}(n, p)$. In general, if $T_{i} \in[0,1]$, the Chernoff Bound can be used even if the $T_{i}$ 's have different distributions!

## Chernoff Bound - Binomial Distribution

Q: Bound the probability that the number of heads that come up in 1000 independent tosses of a fair coin exceeds the expectation by $20 \%$ or more.

Let $T_{i}$ be the r.v. for the event that coin $i$ comes up heads, and let $T$ denote the total number of heads. Hence, $T=\sum_{i=1}^{1000} T_{i}$. For all $i, T_{i} \in\{0,1\}$ and are mutually independent r.v's. Hence, we can use the Chernoff Bound.

We want to compute the probability that the number of heads is larger than the expectation by $20 \%$ meaning that $c=1.2$ for the Chernoff Bound. Computing $\beta(c)=c \ln (c)-c+1 \approx 0.0187$. Since the coin is fair, $\mathbb{E}[T]=1000 \frac{1}{2}=500$. Plugging into the Chernoff Bound, $\operatorname{Pr}[T \geq c \mathbb{E}[T]] \leq \exp (-\beta(c) \mathbb{E}[T]) \Longrightarrow \operatorname{Pr}[T \geq 1.2 \mathbb{E}[T]] \leq \exp (-(0.0187)(500)) \approx 0.0000834$.
Comparing this to using Chebyshev's inequality,

$$
\begin{aligned}
\operatorname{Pr}[T \geq c \mathbb{E}[T]] & =\operatorname{Pr}[T-\mathbb{E}[T] \geq(c-1) \mathbb{E}[T]] \leq \operatorname{Pr}[|T-\mathbb{E}[T]| \geq(c-1) \mathbb{E}[T]] \\
& \leq \frac{\operatorname{Var}[T]}{(c-1)^{2}(\mathbb{E}[T])^{2}}=\frac{1000 \frac{1}{4}}{(1.2-1)^{2}\left(500^{2}\right)}=\frac{250}{0.2^{2} 500^{2}}=\frac{250}{10000}=0.025 .
\end{aligned}
$$

## Chernoff Bound - Lottery Game

Q: Pick-4 is a lottery game in which you pay $\$ 1$ to pick a 4-digit number between 0000 and 9999. If your number comes up in a random drawing, then you win $\$ 5,000$. Your chance of winning is 1 in 10000 . If 10 million people play, then the expected number of winners is 1000 . When there are 1000 winners, the lottery keeps $\$ 5$ million of the $\$ 10$ million paid for tickets. The lottery operator's nightmare is that the number of winners is much greater - especially at the point where more than 2000 win and the lottery must pay out more than it received. What is the probability that will happen?
Let $T_{i}$ be an indicator for the event that player $i$ wins. Then $T:=\sum_{i=1}^{n} T_{i}$ is the total number of winners. If we assume that the players' picks and the winning number are random, independent and uniform, then the indicators $T_{i}$ are independent, as required by the Chernoff bound.

We wish to compute $\operatorname{Pr}[T \geq 2000]=\operatorname{Pr}[T \geq 2 \mathbb{E}[T]]$. Hence $c=2$ and $\beta(c) \approx 0.386$. By the Chernoff bound,

$$
\operatorname{Pr}[T \geq 2 \mathbb{E}[T]] \leq \exp (-\beta(c) \mathbb{E}[T])=\exp (-(0.386) 1000)<\exp (-386) \approx 10^{-168}
$$

## Questions?

## Chernoff Bound - Proof

We want to compute $\operatorname{Pr}[T \geq c \mathbb{E}[T]]=\operatorname{Pr}[f(T) \geq f(c \mathbb{E}[T])]$ where $f$ is a one-one monotonically non-decreasing function. For $c \geq 1$, choosing $f(T)=c^{T}$ and using Markov's Theorem,

$$
\begin{aligned}
\operatorname{Pr}[T \geq c \mathbb{E}[T]] & =\operatorname{Pr}\left[c^{T} \geq c^{c \mathbb{E}[T]}\right] \leq \frac{\mathbb{E}\left[c^{T}\right]}{c^{c \mathbb{E}}[T]} \\
& \left.\leq \frac{\exp ((c-1) \mathbb{E}[T])}{c^{c \mathbb{E}[T]}} \quad \quad \text { (To prove next: } \mathbb{E}\left[c^{T}\right] \leq \exp ((c-1) \mathbb{E}[T])\right) \\
& =\frac{\exp ((c-1) \mathbb{E}[T])}{\exp \left(\ln \left(c^{\mathbb{E}[T]}\right)\right)}=\frac{\exp ((c-1) \mathbb{E}[T])}{\exp (c \mathbb{E}[T] \ln (c))}=\exp (-(c \ln (c)-c+1) \mathbb{E}[T])
\end{aligned}
$$

$\Longrightarrow \operatorname{Pr}[T \geq c \mathbb{E}[T]] \leq \exp (-\beta(c) \mathbb{E}[T])$
The proof would be done if we prove that $\mathbb{E}\left[c^{T}\right] \leq \exp ((c-1) \mathbb{E}[T])$ and we do this next.

## Chernoff Bound - Proof

Claim: $\mathbb{E}\left[c^{T}\right] \leq \exp ((c-1) \mathbb{E}[T])$

$$
\mathbb{E}\left[c^{T}\right]=\mathbb{E}\left[c^{\sum_{i=1}^{n} T_{i}}\right]=\mathbb{E}\left[\prod_{i=1}^{n} c^{T_{i}}\right]=\prod_{i=1}^{n} \mathbb{E}\left[c^{T_{i}}\right]
$$

(Expectation of product of mutually independent $r$.v's is equal to the product of the expectation.)
For two variables, the proof of the above statement is in Lecture 15 and can be easily generalized.

$$
\begin{aligned}
& \left.\leq \prod_{i=1}^{n} \exp \left((c-1) \mathbb{E}\left[T_{i}\right]\right) \quad \text { (To prove next: } \mathbb{E}\left[c^{T_{i}}\right] \leq \exp \left((c-1) \mathbb{E}\left[T_{i}\right]\right)\right) \\
& =\exp \left((c-1) \sum_{i=1}^{n} \mathbb{E}\left[T_{i}\right]\right)=\exp \left((c-1) \mathbb{E}\left[\sum_{i=1}^{n} T_{i}\right]\right) \\
& \text { (Linearity of Expectation) }
\end{aligned}
$$

$$
\Longrightarrow \mathbb{E}\left[c^{T}\right] \leq \exp ((c-1) \mathbb{E}[T])
$$

The proof would be done if we prove that $\mathbb{E}\left[c^{T_{i}}\right] \leq \exp \left((c-1) \mathbb{E}\left[T_{i}\right]\right)$ and we do this next.

## Chernoff Bound - Proof

Claim: $\mathbb{E}\left[c^{T_{i}}\right] \leq \exp \left((c-1) \mathbb{E}\left[T_{i}\right]\right)$

$$
\mathbb{E}\left[c^{T_{i}}\right]=\sum_{v \in \operatorname{Range}\left(T_{i}\right)} c^{v} \operatorname{Pr}\left[T_{i}=v\right] \leq \sum_{v \in \operatorname{Range}\left(T_{i}\right)}(1+(c-1) v) \operatorname{Pr}\left[T_{i}=v\right]
$$

(Since $T_{i} \in[0,1]$ and $c^{v} \leq 1+(c-1) v$ for all $v \in[0,1]$.)

For $c=2$ and $c=5$,



## Chernoff Bound - Proof

$$
\begin{aligned}
\mathbb{E}\left[c^{T_{i}}\right] & \leq \sum_{v \in \operatorname{Range}\left(T_{i}\right)} \operatorname{Pr}\left[T_{i}=v\right]+(c-1) \sum_{v \in \operatorname{Range}\left(T_{i}\right)} v \operatorname{Pr}\left[T_{i}=v\right] \\
& =1+(c-1) \mathbb{E}\left[T_{i}\right] \leq \exp \left((c-1) \mathbb{E}\left[T_{i}\right]\right) \quad(\text { Since } 1+x \leq \exp (x) \text { for all } x) \\
\Longrightarrow \mathbb{E}\left[c^{T_{i}}\right] & \leq \exp \left((c-1) \mathbb{E}\left[T_{i}\right]\right)
\end{aligned}
$$



Hence we have proved the Chernoff Bound!

## Comparing the Bounds

For r.v's $T_{1}, T_{2}, \ldots T_{n}$, if $T_{i} \in\{0,1\}$ and $\operatorname{Pr}\left[T_{i}=1\right]=p_{i}$. Define $T:=\sum_{i=1}^{n} T_{i}$. By linearity of expectation, $\mathbb{E}[T]=\sum_{i=1}^{n} p_{i}$. For $c \geq 1$,
Markov's Theorem: $\operatorname{Pr}[T \geq c \mathbb{E}[T]] \leq \frac{1}{c}$. Does not require $T_{i}$ 's to be independent.
Chebyshev's Theorem: $\operatorname{Pr}[T \geq c \mathbb{E}[T]] \leq \frac{\operatorname{Var}[T]}{(c-1)^{2}(\mathbb{E}[T])^{2}}$. If the $T_{i}$ 's are pairwise independent, by linearity of variance, $\operatorname{Var}[T]=\sum_{i=1}^{n} p_{i}\left(1-p_{i}\right)$. Hence, $\operatorname{Pr}[T \geq c \mathbb{E}[T]] \leq \frac{\sum_{i=1}^{n} p_{i}\left(1-p_{i}\right)}{(c-1)^{2}\left(\sum_{i=1}^{n} p_{i}\right)^{2}}$. If for all $i, p_{i}=1 / 2$, then, $\operatorname{Pr}[T \geq c \mathbb{E}[T]] \leq \frac{1}{(c-1)^{2}}$.
Chernoff Bound: If $T_{i}{ }^{\prime}$ are mutually independent, then,

$$
\begin{aligned}
& \operatorname{Pr}[T \geq c \mathbb{E}[T]] \leq \exp (-\beta(c) \mathbb{E}[T])=\exp \left(-(c \ln (c)-c+1)\left(\sum_{i=1}^{n} p_{i}\right)\right) . \text { If for all } i, p_{i}=1 / 2, \\
& \operatorname{Pr}[T \geq c \mathbb{E}[T]] \leq \exp \left(-\frac{n(c \ln (c)-c+1)}{2}\right) .
\end{aligned}
$$

## Questions?

## Randomized Load Balancing

Fussbook is a new social networking site oriented toward unpleasant people. Like all major web services, Fussbook has a load balancing problem: it receives lots of forum posts that computer servers have to process. If any server is assigned more work than it can complete in a given interval, then it is overloaded and system performance suffers. That would be bad because Fussbook users are not a tolerant bunch.

The programmers of Fussbook just randomly assigned posts to computers, and to their surprise the system has not crashed yet.

Fussbook receives 24000 forum posts in every 10-minute interval. Each post is assigned to one of several servers for processing, and each server works sequentially through its assigned tasks. It takes a server an average of $1 / 4$ second to process a post. No post takes more than 1 second.

This implies that a server could be overloaded when it is assigned more than 600 units of work in a 10 -minute interval. On average, for $24000 \times \frac{1}{4}=6000$ units of work in a 10 -minute interval, Fussbook requires at least 10 servers to ensure that no server is overloaded (with perfect load-balancing).

## Randomized Load Balancing

Q: There might be random fluctuations in the load or the load-balancing is not perfect. How many servers does Fussbook need to ensure that their servers are not overloaded with high-probability?

Let $m$ be the number of servers that Fussbook needs to use. Recall that a server may be overloaded if the load it is assigned exceeds 600 units. Let us first look at server 1 and define $T$ be the r.v. corresponding to the number of units of work assigned to the first server.

Let $T_{i}$ be the number of seconds server 1 spends on processing post $i . T_{i}=0$ if the task is assigned to a different (not the first server). The maximum amount of time spent on post $i$ is 1 -second. Hence, $T_{i} \in[0,1]$.

Since there are $n:=24000$ posts in every 10 -minute interval, the load (amount of units) assigned to the first server is equal to $T=\sum_{i=1}^{n} T_{i}$. Server 1 may be overloaded if $T \geq 600$, and hence we want to upper-bound the probability $\operatorname{Pr}[T \geq 600]$.

Since the assignment of a post to a server is independent of the time required to process the post, the $T_{i}$ r.v's are mutually independent. Hence, we can use the Chernoff bound.

## Randomized Load Balancing

We first need to estimate $\mathbb{E}[T]$.

$$
\begin{aligned}
\mathbb{E}[T] & =\mathbb{E}\left[\sum_{i=1}^{n} T_{i}\right]=\sum_{i=1}^{n} \mathbb{E}\left[T_{i}\right] \\
\mathbb{E}\left[T_{i}\right] & =\sum_{i=1}^{n} \mathbb{E}\left[T_{i} \mid \text { server } 1 \text { is assigned post } i\right] \operatorname{Pr}[\text { server } 1 \text { is assigned post } i] \\
& +\mathbb{E}\left[T_{i} \mid \text { server } 1 \text { is not assigned post } i\right] \operatorname{Pr}[\text { server } 1 \text { is not assigned post } i] \\
& =\frac{1}{4} \frac{1}{m}+(0)(1-1 / m)=\frac{1}{4 m} . \\
\Longrightarrow \mathbb{E}[T] & =\sum_{i=1}^{n} \frac{1}{4 m}=\frac{n}{4 m}=\frac{6000}{m} .
\end{aligned}
$$

## Randomized Load Balancing

Recall the Chernoff Bound: $\operatorname{Pr}[T \geq c \mathbb{E}[T]] \leq \exp (-\beta(c) \mathbb{E}[T])$. In our case, $c \mathbb{E}[T]=600 \Longrightarrow c=\frac{m}{10}$. Hence,

$$
\operatorname{Pr}[T \geq 600] \leq \exp \left(-\beta\left(\frac{m}{10}\right) \frac{6000}{m}\right)
$$

Hence, $\operatorname{Pr}[$ first server is overloaded $]=\operatorname{Pr}[T \geq 600] \leq \exp \left(-\beta\left(\frac{m}{10}\right) \frac{6000}{m}\right)$.
$\operatorname{Pr}[$ some server is overloaded]
$=\operatorname{Pr}[$ server 1 is overloaded $\cup$ server 2 is overloaded $\cup \ldots \cup$ server $m$ is overloaded $]$
$\leq \sum_{j=1}^{m} \operatorname{Pr}[$ server j is overloaded]
$=m \operatorname{Pr}[$ server 1 is overloaded $]=m \exp \left(-\beta\left(\frac{m}{10}\right) \frac{6000}{m}\right)$
(Since all servers are equivalent)
$\Longrightarrow \operatorname{Pr}[$ no server is overloaded $] \geq 1-m \exp \left(-\beta\left(\frac{m}{10}\right) \frac{6000}{m}\right)$.

## Randomized Load Balancing

Plotting $\operatorname{Pr}[$ no server is overloaded] as a function of $m$.


Hence, as $m \geq 12$, the probability that no server gets overloaded tends to 1 and hence none of the Fussbook servers crash!

## Questions?

