CMPT 210: Probability and Computation

Lecture 20

Sharan Vaswani
July 22, 2022

Randomized QuickSort

Given an array A of n distinct numbers, sort the elements in A in increasing order.

Algorithm Randomized QuickSort

1. function QuickSort(A)

2: If Length(A) < 1, return A.

3: Select p € A uniformly at random.
4

5

. Construct arrays Left := [x € A|x < p] and Right := [x € A|x > p].
: Return the concatenation [QuickSort(Left), p, QuickSort(Right)].

Randomized QuickSort

If A=[2,7,0,1,3] and according to the algorithm, p ~ Uniform(A). Say p = 3. For this step,
Left = [2,0, 1] and Right = [7].

The algorithm will return the concatenation [QuickSort([2, 0, 1]), 3, QuickSort([7])] =
[QuickSort([2,0,1]),3,7].

Total number of comparisons = 4 (comparing every element to the pivot = 3.)

In the second step, for running the algorithm on [2,0,1], say p = 1. For this step, Left = [0] and
Right = [2] and the algorithm will return the concatenation
[QuickSort([0]), 1, QuickSort([2]),3,7] = [0,1,2,3,7].

Total number of comparisons = 4 (from step 1) + 2 (comparing elements in Left to pivot = 1.)
Q: Run the algorithm if p = 2 in the first step?

Ans: Left = [0, 1] and Right = [7, 3]. Running the algorithm on [0, 1] will return [0, 1] and on
[7,3] will return [3,7]. Hence the algorithm will return the concatenation [0, 1,2,3,7] thus
sorting the array.

Questions?

Randomized QuickSort

Claim: For a set A with n distinct elements, the expected (over the randomness in the pivot
selection) number of comparisons for QuickSort is O(nIn(n)).

Let us write the elements of A in sorted order, a; < a» < ... < a,. Let X be the r.v. equal to
the number of comparisons performed by the algorithm.

Observation: Every pair of elements is compared at most once since we do not include the pivot
in the recursion.

For i < j, let E;; be the event that elements / and j are compared, and define X; ; to be the
indicator r.v. equal to 1 if event E;; happens. Hence, X = Zl<i<j<nXi»f’ and

E[X]=E Z Xij| = Z E[Xi] = Z Pr[Ei ;] (Linearity of expectation)

1<i<j<n 1<i<j<n 1<i<j<n

Randomized QuickSort

Fix i < j (meaning that a; < a;) and let R = [a;, ..., aj].
Claim: E;; happens if and only if the first pivot selected from R is either a; or a;.

Elements a; and a; are compared if they are still in the same sub-problem at the time that one of
them is chosen as the pivot. Elements a; and a; are split into different recursive sub-problems at
precisely the time that the first pivot is selected from R. If this pivot is either a; or aj, then they
will be compared; otherwise, they will not.

In our example, A=[2,7,0,1,3] and suppose a; = 0 and a; = 2. After p = 3 is chosen,
Left = [2,0,1]. Both 0 and 2 are compared to the pivot p = 3, and end up in the same
sub-problem. Hence the elements in R = [0, 1, 2] appear together.

For the next step, when recursing on Left, if p =1, then Left = [0] and Right = [2] and
elements 0 and 2 will never be compared. On the other hand, if p = 2, then since each element
is compared to the pivot, 0 and 2 will be compared.

Hence, E;; will happen if the first pivot selected from R is either a; or a;.

Randomized QuickSort

Claim: Pr[a; or a; is the first pivot selected from R] = % = J_%

In our example, if a; =0 and aj = 2 and say p =7, then after the first step, Left = [2,0, 1, 3].
Hence the elements in R = [0, 1, 2] appear together in the same sub-problem.

For the second step, when recursing on T = [2,0, 1, 3], since p is chosen uniformly at random,
conditioned on the event that p € R, p is also uniformly random on R. Formally, for x € T,

Pr[p:x]:%.
Prip=x|p € R] = Pr[pP—r[Zng]e R] = E:[[z;;} (Forall x¢ R, Prlp=x N pe R =0)
1|T| yir _ 1

YxerPrlp=x1 " [RI/IT| "~ |R]

Hence, the probability of selecting either 0 or 2 (a; and a;j respectively) in a sub-array (T in the
above example) that contains R ([0, 1,2] in the example) is 2/|R| =2/(j — i + 1) (equal to 2/3
in the example).

Randomized QuickSort

Putting everything together, Pr[E; ;] = Jﬁ
Hence, the expected number of comparisons is equal to
= = [1 1 1 }

RIS Z mzz Z]—/—i—l :2;

1<i<j<n i=1 | j=i+1 i=

n—1
11 1 11 1
23 z4 - <o |z 4=
= ;{2+3 +n]< ”[2+3 +n}

g
< 2n/ - 2n1In(n) (Bounding the harmonic series similar to Lecture 14)
1 X

Hence, the expected number of comparisons required for Randomized QuickSort is O(nIn(n)).
Q: What is the number of comparisons for Randomized QuickSort in the worst-case?

Similar to Randomized QuickSelect, for Randomized QuickSort, the worst-case happens when
the pivot is selected to be the minimum (or maximum) element in the sub-array in each iteration.

And hence the worst-case complexity is O(n?). 6

Markov’'s Theorem for Randomized QuickSort

Since X (the r.v. corresponding to the number of comparisons) is non-negative, we can use
Markov's Theorem — For x > 0, Pr[X > x] < % < 20000 | x = 200nIn(n), then,

Pr[X > 200nIn(n)] < 555 = 0.01.

Similarly, if we want to investigate how likely is the worst-case behaviour, let us set x = 0.5n.
In this case,

2nin(n) _ 4In(n)
0502 n
As n increases, the probability of worst-case behaviour decreases.

Pr[X > 0.5n%] <

—41In(x)/x
0.15

0114

5.1072 \\

0
0 2,000 4,000 6,000 8,000 10,000
X

f(x)

Questions?

