# CMPT 210: Probability and Computation 

Lecture 20

Sharan Vaswani
July 22, 2022

## Randomized QuickSort

Given an array $A$ of $n$ distinct numbers, sort the elements in $A$ in increasing order.

```
Algorithm Randomized QuickSort
    1: function QuickSort( \(A\) )
    2: If Length \((\mathrm{A}) \leq 1\), return A .
    3: Select \(p \in A\) uniformly at random.
    4: Construct arrays Left := \(x \in A \mid x<p]\) and Right : \(=[x \in A \mid x>p]\).
    5: Return the concatenation [QuickSort(Left), \(p\), QuickSort(Right)].
```


## Randomized QuickSort

If $A=[2,7,0,1,3]$ and according to the algorithm, $p \sim \operatorname{Uniform}(A)$. Say $p=3$. For this step, Left $=[2,0,1]$ and Right $=[7]$.
The algorithm will return the concatenation [QuickSort([2, 0, 1]), 3, QuickSort([7])] = [QuickSort([2, 0, 1]), 3, 7].
Total number of comparisons $=4$ (comparing every element to the pivot $=3$.)
In the second step, for running the algorithm on $[2,0,1]$, say $p=1$. For this step, Left $=[0]$ and Right $=[2]$ and the algorithm will return the concatenation
[QuickSort([0]), 1, QuickSort([2]), 3, 7] $=[0,1,2,3,7]$.
Total number of comparisons $=4($ from step 1$)+2($ comparing elements in Left to pivot $=1$.
Q: Run the algorithm if $p=2$ in the first step?
Ans: Left $=[0,1]$ and Right $=[7,3]$. Running the algorithm on $[0,1]$ will return $[0,1]$ and on $[7,3]$ will return $[3,7]$. Hence the algorithm will return the concatenation $[0,1,2,3,7]$ thus sorting the array.

## Questions?

## Randomized QuickSort

Claim: For a set $A$ with $n$ distinct elements, the expected (over the randomness in the pivot selection) number of comparisons for QuickSort is $O(n \ln (n))$.

Let us write the elements of $A$ in sorted order, $a_{1}<a_{2}<\ldots<a_{n}$. Let $X$ be the r.v. equal to the number of comparisons performed by the algorithm.

Observation: Every pair of elements is compared at most once since we do not include the pivot in the recursion.

For $i<j$, let $E_{i, j}$ be the event that elements $i$ and $j$ are compared, and define $X_{i, j}$ to be the indicator r.v. equal to 1 if event $E_{i, j}$ happens. Hence, $X=\sum_{1 \leq i<j \leq n} X_{i, j}$, and

$$
\mathbb{E}[X]=\mathbb{E}\left[\sum_{1 \leq i<j \leq n} X_{i, j}\right]=\sum_{1 \leq i<j \leq n} \mathbb{E}\left[X_{i, j}\right]=\sum_{1 \leq i<j \leq n} \operatorname{Pr}\left[E_{i, j}\right] \quad \text { (Linearity of expectation) }
$$

## Randomized QuickSort

Fix $i<j$ (meaning that $a_{i}<a_{j}$ ) and let $R=\left[a_{i}, \ldots, a_{j}\right]$.
Claim: $E_{i, j}$ happens if and only if the first pivot selected from $R$ is either $a_{i}$ or $a_{j}$.
Elements $a_{i}$ and $a_{j}$ are compared if they are still in the same sub-problem at the time that one of them is chosen as the pivot. Elements $a_{i}$ and $a_{j}$ are split into different recursive sub-problems at precisely the time that the first pivot is selected from $R$. If this pivot is either $a_{i}$ or $a_{j}$, then they will be compared; otherwise, they will not.

In our example, $A=[2,7,0,1,3]$ and suppose $a_{i}=0$ and $a_{j}=2$. After $p=3$ is chosen, Left $=[2,0,1]$. Both 0 and 2 are compared to the pivot $p=3$, and end up in the same sub-problem. Hence the elements in $R=[0,1,2]$ appear together.
For the next step, when recursing on Left, if $p=1$, then Left $=[0]$ and Right $=[2]$ and elements 0 and 2 will never be compared. On the other hand, if $p=2$, then since each element is compared to the pivot, 0 and 2 will be compared.

Hence, $E_{i, j}$ will happen if the first pivot selected from $R$ is either $a_{i}$ or $a_{j}$.

## Randomized QuickSort

Claim: $\operatorname{Pr}\left[a_{i}\right.$ or $a_{j}$ is the first pivot selected from $\left.R\right]=\frac{2}{|R|}=\frac{2}{j-i+1}$.
In our example, if $a_{i}=0$ and $a_{j}=2$ and say $p=7$, then after the first step, Left $=[2,0,1,3]$. Hence the elements in $R=[0,1,2]$ appear together in the same sub-problem.

For the second step, when recursing on $T=[2,0,1,3]$, since $p$ is chosen uniformly at random, conditioned on the event that $p \in R, p$ is also uniformly random on $R$. Formally, for $x \in T$, $\operatorname{Pr}[p=x]=\frac{1}{|T|}$.

$$
\begin{aligned}
\operatorname{Pr}[p=x \mid p \in R] & =\frac{\operatorname{Pr}[p=x \cap p \in R]}{\operatorname{Pr}[p \in R]}=\frac{\operatorname{Pr}[p=x]}{\operatorname{Pr}[p \in R]}(\text { For all } x \notin R, \operatorname{Pr}[p=x \cap p \in R]=0) \\
& =\frac{1 /|T|}{\sum_{x \in R} \operatorname{Pr}[p=x]}=\frac{1 /|T|}{|R| /|T|}=\frac{1}{|R|}
\end{aligned}
$$

Hence, the probability of selecting either 0 or $2\left(a_{i}\right.$ and $a_{j}$ respectively) in a sub-array ( $T$ in the above example) that contains $R([0,1,2]$ in the example) is $2 /|R|=2 /(j-i+1)$ (equal to $2 / 3$ in the example).

## Randomized QuickSort

Putting everything together, $\operatorname{Pr}\left[E_{i, j}\right]=\frac{2}{j-i+1}$.
Hence, the expected number of comparisons is equal to

$$
\begin{aligned}
\mathbb{E}[X] & =\sum_{1 \leq i<j \leq n} \frac{2}{j-i+1}=\sum_{i=1}^{n-1}\left[\sum_{j=i+1}^{n} \frac{2}{j-i+1}\right]=2 \sum_{i=1}^{n-1}\left[\frac{1}{2}+\frac{1}{3} \ldots+\frac{1}{n-i+1}\right] \\
& <2 \sum_{i=1}^{n-1}\left[\frac{1}{2}+\frac{1}{3} \ldots+\frac{1}{n}\right]<2 n\left[\frac{1}{2}+\frac{1}{3} \ldots+\frac{1}{n}\right] \\
& \leq 2 n \int_{1}^{n} \frac{d x}{x}=2 n \ln (n) \quad \text { (Bounding the harmonic series similar to Lecture 14) }
\end{aligned}
$$

Hence, the expected number of comparisons required for Randomized QuickSort is $O(n \ln (n))$.
Q: What is the number of comparisons for Randomized QuickSort in the worst-case?
Similar to Randomized QuickSelect, for Randomized QuickSort, the worst-case happens when the pivot is selected to be the minimum (or maximum) element in the sub-array in each iteration. And hence the worst-case complexity is $O\left(n^{2}\right)$.

## Markov's Theorem for Randomized QuickSort

Since $X$ (the r.v. corresponding to the number of comparisons) is non-negative, we can use Markov's Theorem - For $x>0, \operatorname{Pr}[X \geq x] \leq \frac{\mathbb{E}[x]}{x}<\frac{2 n \ln (n)}{x}$ If $x=200 n \ln (n)$, then, $\operatorname{Pr}[X \geq 200 n \ln (n)]<\frac{2}{200}=0.01$.
Similarly, if we want to investigate how likely is the worst-case behaviour, let us set $x=0.5 n^{2}$. In this case,

$$
\operatorname{Pr}\left[X \geq 0.5 n^{2}\right]<\frac{2 n \ln (n)}{0.5 n^{2}}=\frac{4 \ln (n)}{n}
$$

As $n$ increases, the probability of worst-case behaviour decreases.


## Questions?

