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Randomized QuickSort

Given an array A of n distinct numbers, sort the elements in A in increasing order.

Algorithm Randomized QuickSort
1: function QuickSort(A)
2: If Length(A) ≤ 1, return A.
3: Select p ∈ A uniformly at random.
4: Construct arrays Left := [x ∈ A|x < p] and Right := [x ∈ A|x > p].
5: Return the concatenation [QuickSort(Left), p,QuickSort(Right)].
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Randomized QuickSort

If A = [2, 7, 0, 1, 3] and according to the algorithm, p ∼ Uniform(A). Say p = 3. For this step,
Left = [2, 0, 1] and Right = [7].

The algorithm will return the concatenation [QuickSort([2, 0, 1]), 3,QuickSort([7])] =
[QuickSort([2, 0, 1]), 3, 7].

Total number of comparisons = 4 (comparing every element to the pivot = 3.)

In the second step, for running the algorithm on [2, 0, 1], say p = 1. For this step, Left = [0] and
Right = [2] and the algorithm will return the concatenation
[QuickSort([0]), 1,QuickSort([2]), 3, 7] = [0, 1, 2, 3, 7].

Total number of comparisons = 4 (from step 1) + 2 (comparing elements in Left to pivot = 1.)

Q: Run the algorithm if p = 2 in the first step?

Ans: Left = [0, 1] and Right = [7, 3]. Running the algorithm on [0, 1] will return [0, 1] and on
[7, 3] will return [3, 7]. Hence the algorithm will return the concatenation [0, 1, 2, 3, 7] thus
sorting the array.
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Questions?
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Randomized QuickSort

Claim: For a set A with n distinct elements, the expected (over the randomness in the pivot
selection) number of comparisons for QuickSort is O(n ln(n)).

Let us write the elements of A in sorted order, a1 < a2 < . . . < an. Let X be the r.v. equal to
the number of comparisons performed by the algorithm.

Observation: Every pair of elements is compared at most once since we do not include the pivot
in the recursion.

For i < j , let Ei,j be the event that elements i and j are compared, and define Xi,j to be the
indicator r.v. equal to 1 if event Ei,j happens. Hence, X =

∑
1≤i<j≤n Xi,j , and

E[X ] = E

 ∑
1≤i<j≤n

Xi,j

 =
∑

1≤i<j≤n

E[Xi,j ] =
∑

1≤i<j≤n

Pr[Ei,j ] (Linearity of expectation)

3



Randomized QuickSort

Fix i < j (meaning that ai < aj) and let R = [ai , . . . , aj ].

Claim: Ei,j happens if and only if the first pivot selected from R is either ai or aj .

Elements ai and aj are compared if they are still in the same sub-problem at the time that one of
them is chosen as the pivot. Elements ai and aj are split into different recursive sub-problems at
precisely the time that the first pivot is selected from R . If this pivot is either ai or aj , then they
will be compared; otherwise, they will not.

In our example, A = [2, 7, 0, 1, 3] and suppose ai = 0 and aj = 2. After p = 3 is chosen,
Left = [2, 0, 1]. Both 0 and 2 are compared to the pivot p = 3, and end up in the same
sub-problem. Hence the elements in R = [0, 1, 2] appear together.

For the next step, when recursing on Left, if p = 1, then Left = [0] and Right = [2] and
elements 0 and 2 will never be compared. On the other hand, if p = 2, then since each element
is compared to the pivot, 0 and 2 will be compared.

Hence, Ei,j will happen if the first pivot selected from R is either ai or aj .
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Randomized QuickSort

Claim: Pr[ai or aj is the first pivot selected from R] = 2
|R| =

2
j−i+1 .

In our example, if ai = 0 and aj = 2 and say p = 7, then after the first step, Left = [2, 0, 1, 3].
Hence the elements in R = [0, 1, 2] appear together in the same sub-problem.

For the second step, when recursing on T = [2, 0, 1, 3], since p is chosen uniformly at random,
conditioned on the event that p ∈ R, p is also uniformly random on R. Formally, for x ∈ T ,
Pr[p = x ] = 1

|T | .

Pr[p = x |p ∈ R] =
Pr[p = x ∩ p ∈ R]

Pr[p ∈ R]
=

Pr[p = x ]

Pr[p ∈ R]
(For all x /∈ R, Pr[p = x ∩ p ∈ R] = 0)

=
1/|T |∑

x∈R Pr[p = x ]
=

1/|T |
|R|/|T |

=
1
|R|

Hence, the probability of selecting either 0 or 2 (ai and aj respectively) in a sub-array (T in the
above example) that contains R ([0, 1, 2] in the example) is 2/|R| = 2/(j − i + 1) (equal to 2/3
in the example).
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Randomized QuickSort

Putting everything together, Pr[Ei,j ] =
2

j−i+1 .

Hence, the expected number of comparisons is equal to

E[X ] =
∑

1≤i<j≤n

2
j − i + 1

=
n−1∑
i=1

 n∑
j=i+1

2
j − i + 1

 = 2
n−1∑
i=1

[
1
2
+

1
3
. . .+

1
n − i + 1

]

< 2
n−1∑
i=1

[
1
2
+

1
3
. . .+

1
n

]
< 2n

[
1
2
+

1
3
. . .+

1
n

]
≤ 2n

∫ n

1

dx

x
= 2n ln(n) (Bounding the harmonic series similar to Lecture 14)

Hence, the expected number of comparisons required for Randomized QuickSort is O(n ln(n)).

Q: What is the number of comparisons for Randomized QuickSort in the worst-case?

Similar to Randomized QuickSelect, for Randomized QuickSort, the worst-case happens when
the pivot is selected to be the minimum (or maximum) element in the sub-array in each iteration.
And hence the worst-case complexity is O(n2). 6



Markov’s Theorem for Randomized QuickSort

Since X (the r.v. corresponding to the number of comparisons) is non-negative, we can use
Markov’s Theorem – For x > 0, Pr[X ≥ x ] ≤ E[X ]

x < 2n ln(n)
x If x = 200n ln(n), then,

Pr[X ≥ 200n ln(n)] < 2
200 = 0.01.

Similarly, if we want to investigate how likely is the worst-case behaviour, let us set x = 0.5n2.
In this case,

Pr[X ≥ 0.5n2] <
2n ln(n)
0.5n2 =

4 ln(n)
n

As n increases, the probability of worst-case behaviour decreases.
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Questions?
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