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Warmup – Tossing coins

Q: We have a coin such that Pr[heads] = p. We toss this coin 5 times independently and record
the observations. What is the probability that we get 3H and 2T in the 5 tosses.

If X is the r.v. that is equal to the number of heads in 5 tosses, then X ∼ Bin(5, p) and hence,
Pr[3H and 2T] =

(5
3

)
p3(1 − p)2.
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Warmup – Tossing coins

Q: We have a coin such that Pr[heads] = p. We toss this coin 5 times independently. What is
the probability that we get the following sequence of observations – HTHHT.

Pr[observe HTHHT] = Pr[Toss 1 is H ∩ Toss 2 is T ∩ . . . ∩ Toss 5 is T]

= Pr[Toss 1 is H] Pr[Toss 2 is T . . .Pr[Toss 5 is H]
(Since the tosses are independent)

Pr[observe HTHHT] = p3(1 − p)2

Q: If I use a different coin that has Pr[heads] = q and repeat the same experiment, what is the
probability that we get the following sequence of observations – HTHHT?

By the same reasoning as before, Pr[observe HTHHT] = q3(1 − q)2.

Hence, we can say that Pr[observe HTHHT|coin has Pr[heads = p]] = p3(1 − p)2.
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Questions?
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Estimating the bias of a coin

Let us “invert” this reasoning – suppose we took a coin and want to estimate its bias i.e. figure
out what is the Pr[heads].

To do this, we take the coin and perform an experiment – toss the coin 5 times and record the
observations. Suppose we get HTHHT as the sequence of observations.

This sequence of observations that we got is referred to as the data and denoted by D. Using D,
we wish to estimate the bias of the coin.

If we “guess” the bias of the coin to be p, then the probability that we would see D is equal to
p3(1 − p)2 (by exactly the same reasoning as before). Formally,

Pr[D|p] = p3(1 − p)2

This is referred to as the likelihood of seeing the data (given p).
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Estimating the bias of a coin

The standard way to “fit” the data is maximum likelihood estimation. For this, the standard
procedure is to compute p̂ that maximizes the likelihood of observing D.

Formally,
p̂ = argmax

p
Pr[D|p]

Here, argmaxp returns the value of p that maximizes the likelihood. p̂ is the statistical
estimate of p (similar to what we saw in the Voter Poll example) and is also referred to as the
maximum likelihood estimator (MLE).

It is equivalent and more convenient to calculate the minimizer of the negative log-likelihood
(NLL) (since log is a monotonic function). The NLL is also referred to as the loss function.
Formally,

p̂ = argmin
p

− log(Pr[D|p])
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Estimating the bias of a coin

Let us compute the MLE for the bias of the coin. Recall that Pr[D|p] = p3(1 − p)2.

− log(Pr(D|p)) = −3 log(p)− 2 log(1 − p) =⇒ p̂ = argmin
p

[−3 log(p)− 2 log(1 − p)]

Taking derivatives and setting it to zero,

d [−3 log(p)− 2 log(1 − p)]

dp
= 0 =⇒ −3

p̂
+

2
1 − p̂

= 0 =⇒ 5p̂ = 3 =⇒ p̂ =
3
5
= 0.6.

Checking that this is the minimum by computing the second derivative,

d2[−3 log(p)− 2 log(1 − p)]

dp2 =
d [−3

p + 2
1−p ]

dp
= +

3
p2 +

2
(1 − p)2

> 0 (for p ∈ (0, 1))

Hence, p̂ is the minimum of the NLL.

For this simple example of estimating the bias of a coin, the MLE (for estimating the Pr[heads])
is equal to the average number of heads we saw in D.
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Estimating the bias of a coin

Q: Based on the results of our experiment, what should be our “guess”/“prediction” that we get a
heads in the next toss of the coin?

We have estimated the bias of the coin to be equal to 0.6. Hence, given the results of our
experiment, we should predict that we will get a heads with probability 0.6 when we toss this
coin again in the future.

We just solved a machine learning problem!
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Machine learning

The basic framework in machine learning is to:

Collect (training) data from the world (in this case, by tossing the coin).

Construct a model that can explain the observations (in this case, our model was that each
toss is independent and follows the same Bernoulli distribution).

Use the model and D to construct the likelihood function (in this case, p3(1 − p)2).

Compute the MLE by minimizing the negative log-likelihood. This is an optimization
problem (in this case, it was just taking derivatives) and is referred to training the model
(in this case, finding the parameter p̂).

Use the trained model to make predictions about the future (in this case, predict the
probability that the next toss comes up heads). This is referred to as prediction or
inference.
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Estimating the bias of a coin

Q: Suppose someone hands a new coin and asks us the following question: I tossed this coin 10
times, I got 4H and 6T . What is the probability that I will see 4H and 6T in the next 10 tosses
of the coin.

In this case, D (referred to as the training data) consists of the 4H and 6T observations in the
10 tosses of the coin. For computing the MLE for the bias of the coin, recall that it is equal to
the average number of heads we got in the 10 tosses. And hence in this case, p̂ = 0.4.

The question is that of predicting the probability of getting 4H and 6T in the next 10 tosses
(referred to as the test data). If X is the r.v. equal to the number of heads in the next 10
tosses of the coin, then given D, X ∼ Bin(10, 0.4).

Hence, Pr[4H, 6T in the next 10 tosses|D] =
(10

4

)
(0.4)4(0.6)6.
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Questions?
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Sigmoid function

To extend this concept to more complicated problems, let us introduce the sigmoid function.

The sigmoid function is defined as: σ : R → [0, 1]: σ(x) := 1
1+exp(−x) .
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Since the range of σ is [0, 1], we will use it to output probabilities. Define parameter θ ∈ R s.t.
p = σ(θ) = 1

1+exp(−θ) .

1 − p = 1 − 1
1 + exp(−θ)

=
exp(−θ)

1 + exp(−θ)
=

1
1 + exp(θ)

Hence, if p = σ(θ), 1 − p = σ(−θ).
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Sigmoid function

σ is an invertible function and hence there is a one-one mapping from θ to p (every p can be
specified by specifying the equivalent θ). Formally, since p = σ(θ) and 1 − p = σ(−θ).

p

1 − p
=

σ(θ)

σ(−θ)
=

1 + exp(θ)

1 + exp(−θ)
=

exp(θ) (1 + exp(θ))

1 + exp(θ)
= exp(θ) =⇒ log

(
p

1 − p

)
= θ

Recall from Assignment 2 that p
1−p is referred to as the odds. Hence the sigmoid transformation

is equivalent to choosing the parameter θ to represent the log-odds.
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Back to estimating the bias of a coin

Recall that when D = HTHHT , Pr[D|p] = p3(1− p)3. Since there is a one-one mapping from p

to θ, we can represent the likelihood in terms of θ. Formally,

Pr[D|θ] = [σ(θ)]3[σ(−θ)]2 =
1

(1 + exp(−θ))3 (1 + exp(θ))2
=

(exp(θ))3

(1 + exp(θ))5

Let us write down the NLL and minimize it w.r.t θ (exactly as we did w.r.t p).

− log(Pr[D|θ]) = −3 log(exp(θ)) + 5 log(1 + exp(θ))

Computing the derivative and setting it zero,

d [− log(Pr[D|θ])]
dθ

= −3 +
5 exp(θ̂)

1 + exp(θ̂)
= 0 =⇒ exp(θ̂)

1 + exp(θ̂)
=

3
5

=⇒ exp(θ) =
3
2

=⇒ θ = ln(3/2)

Q: Sanity check: What is p when θ = ln(3/2)?

Ans: p = 1
1+exp(−θ) =

exp(θ)
1+exp(θ) =

3/2
1+3/2 = 3/5 = 0.6 which is exactly what we had earlier.
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Estimating the bias of multiple coins

Q: Suppose now we toss 5 different coins and obtain the sequence HTHHT . We want to
estimate the bias of each of these coins, but have some additional information that the bias of
the coin i depends on its weight xi ∈ R (which is known).

We will assume a linear model meaning that our model for the bias of coin is:

pi = σ(θxi ) =
1

1 + exp(−θxi )

Here, θ is the parameter of our model, xi (the known weights) for the coins are referred to as
the features. The model is linear because the argument to the sigmoid function is linear in θ.

As before, we need to obtain the MLE θ̂. Writing down the likelihood in terms of θ,

Pr[D|{x1, x2, . . . , x5}, θ] = [σ(θx1)] [σ(−θx2)] [σ(θx3)][σ(θx4)][σ(−θx5)]

Note that now identity of the coins matter because of their weight. Meaning that in the
likelihood term, coin 1 with weight x1 coming up heads is NOT the same as coin 2 with weight
x2 coming up heads.
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Estimating the bias of multiple coins

To represent the likelihood in a more compact way, let us define yi ∈ R such that yi = 1 if coin i

in D is a heads and yi = −1 if coin i in D is a tails. For D = HTHHT , y1 = 1, y2 = −1 and
so on. For example i , yi is referred to as the label, hence each toss i is described by the (xi , yi )

pair referred to as the input-output pair or the feature-label pair.

Pr[D|{x1, x2, . . . , x5}, θ] = [σ(y1θx1)] [σ(y2θx2)] [σ(y5θx5)] =
5∏

i=1

[σ(yiθxi )]

=⇒ − log(Pr[D|{x1, x2, . . . , x5}, θ]) =
5∑

i=1

− log(σ(yiθxi )) =
5∑

i=1

log (1 + exp(−yiθxi ))

The NLL defined above is referred to as the logistic loss and this model is referred to as
(1-dimensional) logistic regression. Since we are classifying the coins as those that came up
heads or tails, we are doing binary classification.

Logistic regression for binary classification is one of the most things in machine learning. E.g.
Classifying whether a patient with feature x has cancer or not is another example where this
procedure can be used. 13



Estimating the bias of multiple coins

In order to compute the MLE θ̂, we need to minimize the NLL on the previous slide, meaning that

θ̂ = argmin
θ

5∑
i=1

log (1 + exp(−yiθxi )) .

Unfortunately, this optimization problem can not be solved directly by taking derivatives like
before. We need techniques from numerical optimization that studies efficiently minimizing
complicated functions and the related computational properties.

If you like numerical optimization and want to see how to use it for solving difficult machine
learning problems, you can take the CMPT 409 (Optimization for Machine Learning) course I am
teaching in the Fall!

Once we have computed θ̂, we can use it to predict the probability of heads for a new coin that
has feature x as p = σ(θx).
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Generalizing to multiple dimensions

Suppose each coin i has a vector of features – its weight, air resistance, etc that affect its bias.
If there are d such features, xi ∈ Rd . Correspondingly, we will also have a vector of parameters
θ ∈ Rd and the linear model can be generalized as,

pi = σ

 d∑
j=1

θjxi,j


Writing this in terms of the dot product ⟨θ, xi ⟩ =

∑d
j=1 θjxi,j ,

pi =
1

1 + exp(−⟨θ, xi ⟩)
Suppose we toss the coins, and get the same D = HTHHT , by following the same steps as

before, the MLE can be given by:

θ̂ = argmin
θ

5∑
i=1

log (1 + exp(−yi ⟨θxi ⟩)) .
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Generalizing beyond coins

Suppose we are given n inputs in the form of their features (X ) and labels y . Here, X is an
d × n-dimensional matrix such that the feature of input i is column Xi ∈ Rd and y is a
n-dimensional vector such that yi ∈ {−1, 1}.

In our coin example, the inputs were coins with different properties (features) and the labels
corresponded to whether we got a heads (y = 1) or tails (y = −1). The feature-label could be
characteristics of a patient and whether or not they have cancer, pixels in pictures of cats and
dogs and whether it is a cat or a dog, text in the email and whether or not it is spam (Gmail
uses a logistic regression model for classifying spam).

Using the linear model, Pr[yi = 1] = pi =
1

1+exp(−⟨θ,Xi ⟩) , we can write the general logistic
regression loss function for binary classification and the corresponding MLE as its minimizer, i.e.

θ̂ = argmin
θ

n∑
i=1

log (1 + exp(−yi ⟨θXi ⟩)) .

This is the definition you will find in machine learning textbooks!
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Generalizing beyond linear models

We are free to choose how to define pi . We have been using a linear model such that,
pi = σ(⟨θ,Xi ⟩), but we could use any function f (θ,Xi ) as an argument to the sigmoid function.

Designing such f functions is a major research direction. Current most popular models (used to
classify videos on YouTube, rank posts on Facebook/Instagram) are (much) larger variants of
neural networks that look like this:

If you found this lecture this fascinating, you can take the CMPT 410 (Machine Learning) course
offered in the Fall!
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