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Recap

Standard Deviation: For r.v. X , the standard deviation of X is defined as
σX :=

√
Var[X ] =

√
E[X 2]− (E[X ])2.

For constants a, b and r.v. R, Var[aR + b] = a2Var[R].

Pairwise Independence: Random variables R1,R2,R3, . . .Rn are pairwise independent if for any
pair Ri and Rj , for x ∈ Range(Ri ) and y ∈ Range(Rj),
Pr[(Ri = x) ∩ (Rj = y)] = Pr[Ri = x ] Pr[Rj = y ].

Linearity of variance for pairwise independent r.v’s: If R1, . . . ,Rn are pairwise independent,
Var[R1 + R2 + . . .Rn] =

∑n
i=1 Var[Ri ].

1



Matching Birthdays

Q: In a class of n students, what is the probability that two students share the same birthday?
Assume that (i) each student is equally likely to be born on any day of the year, (ii) no leap years
and (iii) student birthdays are independent of each other.

For d := 365,

Pr[two students share the same birthday] = 1 − d × (d − 1)× (d − 2)× . . . (d − (n − 1))
dn

Q: On average, how many pairs of students have matching birthdays?

Define M to be the number of pairs of students with matching birthdays. For a fixed ordering of
the students, let Xi,j be the indicator r.v. corresponding to the event Ei,j that the birthdays of
students i and j match. Hence,

M =
∑

i,j|1≤i<j≤n

Xi,j =⇒ E[M] = E[
∑

i,j|1≤i<j≤n

Xi,j ] =
∑

i,j|1≤i<j≤n

E[Xi,j ] =
∑

i,j|1≤i<j≤n

Pr[Ei,j ]

(Linearity of expectation)
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Matching Birthdays

For a pair of students i , j , let Bi be the r.v. equal to the day of student i ’s birthday. Range(Bi )
= {1,2,. . . , 365} and for all k ∈ [365], Pr[Bi = k] = 1/d .

Ei,j = (Bi = 1 ∩ Bj = 1) ∪ (Bi = 2 ∩ Bj = 2) ∪ . . .

=⇒ Pr[Ei,j ] =
d∑

k=1

Pr[Bi = k ∩ Bj = k] =
d∑

k=1

Pr[Bi = k] Pr[Bj = k] =
d∑

k=1

1
d2 =

1
d

=⇒ E[M] =
∑

i,j|1≤i<j≤n

Pr[Ei,j ] =
1
d

∑
i,j|1≤i<j≤n

(1) =
1
d
[(n − 1) + (n − 2) + . . .+ 1] =

n (n − 1)
2d

Hence, in our class of 48 students, on average, there are (24) (47)
365 = 3.09 students with

matching birthdays.
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Matching Birthdays

Q: Are the Xi,j mutually independent?

No, because if Xi,j = 1 and Xj,k = 1, then,
Pr[Xi,k = 1|Xj,k = 1 ∩ Xi,j = 1] = 1 ̸= 1

d = Pr[Xi,k = 1].

Q: Are the Xi,j pairwise independent?

Yes, because for all i , j and i ′, j ′ (where i ̸= i ′), Pr[Xi,j = 1|Xi ′,j′ = 1] = Pr[Xi,j = 1] because if
students i ′ and j ′ have matching birthdays, it does not tell us anything about whether i and j

have matching birthdays.
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Matching Birthdays

Q: If M is the r.v. equal to the number of pairs of students with matching birthdays, calculate
Var[M].

Var[M] = Var

 ∑
i,j|1≤i<j≤n

Xi,j


Since Xi,j are pairwise independent, the variance of the sum is equal to the sum of the variance.

=⇒ Var[M] =
∑

i,j|1≤i<j≤n

Var[Xi,j ] =
∑

i,j|1≤i<j≤n

1
d

(
1 − 1

d

)
=

1
d

(
1 − 1

d

)
n (n − 1)

2

(Since Xi,j is an indicator (Bernoulli) r.v.)

Hence, in our class of 48 students, the standard deviation for the matching birthdays is equal to√
(24) (47)

365
364
365 ≈ 1.75.
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Questions?
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Covariance

For two random variables R and S , the covariance between R and S is defined as:

Cov[R,S ] = E[(R − E[R]) (S − E[S ])] = E[RS ]− E[R]E[S ]

Cov[R,S ] = E[(R − E[R]) (S − E[S ])]

= E [RS − R E[S ]− S E[R] + E[R]E[S ]]

= E[RS ]− E[R E[S ]]− E[S E[R]] + E[R]E[S ]

=⇒ Cov[R,S ] = E[RS ]− E[R]E[S ]− E[S ]E[R] + E[R]E[S ] = E[RS ]− E[R]E[S ]

Covariance generalizes the notion of variance to multiple random variables.

Cov[R,R] = E[R R]− E[R]E[R] = Var[R]

If R and S are independent r.v’s, E[RS ] = E[R]E[S ] and Cov[R,S ] = 0.

The covariance between two r.v’s is symmetric i.e. Cov[R,S ] = Cov[S ,R].
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Covariance

For two arbitrary (not necessarily independent) r.v’s, R and S ,

Var[R + S ] = Var[R] + Var[S ] + 2 Cov[R,S ]

Recall that in Lecture 16 (Slide 4), we showed that,

Var[R + S ] = Var[R] + Var[S ] + 2(E[RS ]− E[R]E[S ]) = Var[R] + Var[S ] + 2 Cov[R,S ].

If R and S are independent, Cov[R,S ] = 0 and we recover the formula for the sum of
independent variables.

For R = S , Var[R +R] = Var[R] +Var[R] + 2Cov[R,R] = Var[R] +Var[R] + 2Var[R] = 4Var[R]
which is consistent with our previous formula that Var[2R] = 22Var[R].

Generalization to multiple random variables R1,R2, . . .Rn (Recall from Lecture 16 (Slide 5)):

Var

[
n∑

i=1

Ri

]
=

n∑
i=1

Var[Ri ] + 2
∑

1≤i<j≤n

Cov[Ri ,Rj ]
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Covariance - Example

Q: If X and Y are indicator r.v’s for events A and B respectively, calculate the covariance
between X and Y

Note that X = IA and Y = IB and XY = IA∩B .

E[X ] = Pr[A] ;E[Y ] = Pr[B]

Cov[X ,Y ] = E[XY ]− E[X ]E[Y ] = Pr[A ∩ B]− Pr[A] Pr[B]

If Cov[X ,Y ] > 0 =⇒ Pr[A ∩ B] > Pr[A] Pr[B]. Hence,

Pr[A|B] = Pr[A ∩ B]

Pr[B]
>

Pr[A] Pr[B]

Pr[B]
= Pr[A]

If Cov [X ,Y ] > 0, it implies that Pr[A|B] > Pr[A] and hence, the probability that event A
happens increases if B is going to happen/has happened. Similarly, if Cov [X ,Y ] < 0,

Pr[A|B] < Pr[A]

In this case, if B happens, then the probability of event A decreases. 8



Correlation

The correlation between two r.v’s R1 and R2 is defined as:

Corr[R1,R2] =
Cov[R1,R2]√
Var[R1]Var[R2]

Corr[R1,R2] ∈ [−1, 1] and indicates the strength of the relationship between R1 and R2.

If Corr[R1,R2] > 0, then R1 and R2 are said to be positively correlated, else if Corr[R1,R2] < 0,
the r.v’s are negatively correlated.

If R1 = R2 = R, then, Corr[R,R] = Cov[R,R]√
Var[R]Var[R]

= Var[R]
Var[R] = 1.

If R1 and R2 are independent, Cov[R1,R2] = 0 and Corr[R1,R2] = 0.

If R1 = −R2 = R, then,

Corr[R,−R] =
Cov[R,−R]√
Var[R]Var[−R]

=
Cov[R,−R]√

Var[R] (−1)2Var[R]
=

Cov[R,−R]

Var[R]

=
E[−R2]− E[R]E[−R]

Var[R]
=

−E[R2] + E[R]E[R]
Var[R]

=
−Var[R]
Var[R]

= −1
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Questions?
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Tail inequalities

Variance gives us one way to measure how “spread” the distribution is – weighted average of the
deviation of the random variable from its mean.

Tail inequalities bound the probability that the r.v. takes a value much different from its mean.

For example, consider a r.v. X that can take on only non-negative values and E[X ] = 99.99.
This immediately implies that Pr[X ≥ 300] ≤ 1

3 . This is because

E[X ] =
∑

x∈Range(X )

x Pr[X = x ] =
∑

x|x≥300

x Pr[X = x ] +
∑

x|0≤x<300

x Pr[X = x ]

≥
∑

x|x≥300

(300) Pr[X = x ] +
∑

x|0≤x<300

x Pr[X = x ]

= (300) Pr[X ≥ 300] +
∑

x|0≤x<300

x Pr[X = x ]

If Pr[X ≥ 300] > 1
3 , then, E[X ] > (300) 1

3 +
∑

x|0≤x<300 x Pr[X = x ] > 100 (since the second
term is always non-negative). Hence, if Pr[X ≥ 300] > 1

3 , E[X ] > 100 which is a contradiction
since E[X ] = 99.99. 10



Markov’s Theorem

Markov’s theorem formalizes the intuition on the previous slide, and can be stated as follows.
Markov’s Theorem: If X is a non-negative random variable, then for all x > 0,

Pr[X ≥ x ] ≤ E[X ]

x
.

Define Ix to be the indicator r.v. for the event [X ≥ x ]. Then for all values of X , x Ix ≤ X .
Taking expectations,

E[x Ix ] ≤ E[X ] =⇒ x E[Ix ] ≤ E[X ] =⇒ x Pr[X ≥ x ] ≤ E[X ] =⇒ Pr[X ≥ x ] ≤ E[X ]

x
.

Since the above theorem holds for all x > 0, let’s set x = cE[X ] for c ≥ 1. Hence,

Pr[X ≥ cE[X ]] ≤ 1
c

Hence, the probability that X is “far” from the mean in terms of the multiplicative factor c is
upper-bounded by 1

c .
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Markov’s Theorem – Example

Q: Suppose there is a dinner party where n people check in their coats. The coats are mixed up
during dinner, so that afterward each person receives a random coat. In particular, each person
gets their own coat with probability 1

n .

Recall that if G is the r.v. corresponding to the number of people that receive their own coat,
then we used the linearity of expectation to derive that E[G ] = 1. Using Markov’s Theorem,

Pr[G ≥ x ] ≤ E[G ]

x
=

1
x
.

Hence, we can bound the probability that x people receive their own coat. For example, there is
no better than 20% chance that 5 people get their own coat.
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Markov’s Theorem – Example

Q: Suppose n people are eating different appetizers arranged on a circular, rotating banquet tray.
Someone then spins the tray so that each person receives a random appetizer. What is the
probability that everyone gets the same appetizer as before?

There are n possible orientations for the tray, and hence the probability that everyone gets the
same appetizer is 1

n . Let us solve this using Markov’s Theorem.

If R is the r.v. corresponding to the number of people who get the same appetizer,
E[R] = (n)

( 1
n

)
+ (0)

(
1 − 1

n

)
= 1. Using Markov’s Theorem with x = n,

Pr[R ≥ n] ≤ E[R]
n

=
1
n
.

Hence, Markov’s inequality is “tight” for this example, and exactly gives the probability that
Pr[R = n].
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Markov’s Theorem – Example

Q: If X is a non-negative r.v. such that E[X ] = 150, compute the probability that X is at least
200. Ans: Pr[X ≥ 200] ≤ E[X ]

200 = 3
4

If we know that X can not take values less than 100, we can use Markov’s Theorem to get a
tighter bound.

Define Y := X − 100. E[Y ] = E[X ]− 100 = 50 and Y is non-negative.

Pr[X ≥ 200] = Pr[Y + 100 ≥ 200] = Pr[Y ≥ 100] ≤ E[Y ]

100
=

50
100

=
1
2

Hence, if we have additional information (in the form of a lower-bound that a r.v. can not be
smaller than some constant b > 0), we can use Markov’s Theorem on the shifted r.v. (Y in our
example) and obtain a tighter bound on the probability of deviation. We will make this precise in
Assignment 4!
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Chebyshev’s Theorem

General Idea: Use Markov’s Theorem with some cleverly chosen function of X . Formally, for
some function f such that Y := f (X ) is non-negative. Using Markov’s Theorem for Y ,

Pr[f (X ) ≥ x ] ≤ E[f (X )]

x

Choosing f (X ) = |X − E[X ]|2 and x = y2 implies that f (X ) is non-negative and x > 0. Using
Markov’s Theorem,

Pr[|X − E[X ]|2 ≥ y2] ≤ E[|X − E[X ]|2]
y2

Note that Pr[|X − E[X ]|2 ≥ y2] = Pr[|X − E[X ]| ≥ y ], and hence,

Pr[|X − E[X ]| ≥ y ] ≤ E[|X − E[X ]|2]
y2 =

Var[X ]

y2

Chebyshev’s Theorem: For a r.v. X and a constant x > 0,

Pr[|X − E[X ]| ≥ x ] ≤ Var[X ]

x2 .

15



Chebyshev’s Theorem

Chebyshev’s Theorem bounds the probability that the random variable X is “far” away from the
mean E[X ] by an additive factor of x .

If we set x = cσX where σX is the standard deviation of X , then by Chebyshev’s Theorem,

Pr[|X − E[X ]| ≥ cσX ] ≤
Var[X ]

c2σ2
X

=
1
c2

Hence,

Pr[E[X ]− cσX < X < E[X ] + cσX ] = 1 − Pr[|X − E[X ]| ≥ cσX ] ≥ 1 − 1
c2 .

Hence, Chebyshev’s Theorem can be used to bound the probability that X is “concentrated”
near its mean.
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Chebyshev’s Theorem - Example

Q: If X is a non-negative r.v. such that E[X ] = 100 and σX = 15, compute the probability that
X is at least 300.

If we use Markov’s Theorem, Pr[X ≥ 300] ≤ E[X ]
300 = 1

3 .

Note that Pr[|X − 100| ≥ 200] = Pr[X ≤ −100 ∪ X ≥ 300] = Pr[X ≥ 300]. Using Chebyshev’s
Theorem,

Pr[|X − 100| ≥ 200] ≤ Var[X ]

(200)2
=

152

2002 ≈ 1
178

.

Hence, by exploiting the knowledge of the variance and using Chebyshev’s inequality, we can
obtain a tighter bound.
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Chebyshev’s Theorem - Example

Q: Consider an r.v. X ∼ Bin(20, 0.75). Plot the PDFX , compute its mean and standard
deviation and bound Pr[10 < X < 20].

Range(X ) = {0, 1, . . . , 20} and for k ∈ Range(X ),
f (k) =

(
n
k

)
pk(1 − p)n−k .

E[X ] = np = (20)(0.75) = 15
Var[X ] = np(1 − p) = 20(0.75)(0.25) = 3.75 and hence
σX =

√
3.75 ≈ 1.94.

Pr[10 < X < 20] = 1 − Pr[X ≤ 10 ∪ X ≥ 20]

= 1 − Pr[|X − 15| ≥ 5]

= 1 − Pr[|X − E[X ]| ≥ 5]

≥ 1 − Var[X ]

(5)2
= 1 − 3.75

25
= 0.85.

Hence, the “probability mass” of X is “concentrated” around its mean.
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Chebyshev’s Theorem - Example

Q: In a class of n students, assume that (i) each student is equally likely to be born on any day
of the year, (ii) no leap years and (iii) student birthdays are independent of each other, if M is
the r.v. equal to the number of pairs of students with matching birthdays, calculate
Pr[|M − E[M]| > x ] for n = 48.

Recall that for n = 48, E[M] ≈ 3.09 and Var[M] ≈ 3.08. Hence, by Chebyshev’s Theorem,

Pr[|M − 3.09| > x ] ≤ 3.08
x2 .

Hence, for x = 3, Pr[|M − 3.09| > 3] ≤ 3.08
9 ≈ 0.34. Hence, there is 34% chance that the

number of matched birthdays is greater than 6.09 and smaller than 0.09.
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Questions?
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