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Logistics

Collect your Midterm exams from TASC-1 9203 on Tuesdays between 10.30 am - 12 pm.

Assignment 3 is out: https://vaswanis.github.io/210-S22/A3.pdf
Due Friday 15 July in class.

For A3, you can use your late-submission and submit on Tuesday 19 July in class.

Solutions will be released on 19 July after class, meaning that no submissions will be
allowed after that.

If you have used your late-submission, and submit late again, you will lose 50% of the mark.

If you have questions about either assignment or the marking, post it on Piazza:
https://piazza.com/sfu.ca/summer2022/cmpt210/home
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Recap

Expectation/mean of a random variable R is denoted by E[R] and “summarizes” its distribution.
Formally, E[R] :=

∑
ω∈S Pr[ω]R[ω]

Alternate definition of expectation: E[R] =
∑

x∈Range(R) x Pr[R = x ].

Linearity of Expectation: For n random variables R1,R2, . . . ,Rn and constants a1, a2, . . . , an,
E
[∑n

i=1 aiRi

]
=

∑n
i=1 ai E[Ri ].

Conditional Expectation: For random variable R, the expected value of R conditioned on an
event A is given by:

E[R|A] =
∑

x∈Range(R)

x Pr[R = x |A]

Law of Total Expectation: If R is a random variable S → V and events A1,A2, . . .An form a
partition of the sample space, then,

E[R] =
∑
i

E[R|Ai ] Pr[Ai ]
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Independence of random variables

We define two random variables R1 and R2 to be independent if for all x1 ∈ Range(R1) and
x2 ∈ Range(R2), events [R1 = x1] and [R2 = x2] are independent. More formally,

Pr[(R1 = x1) ∩ (R2 = x2)] = Pr[(R1 = x1)] Pr[(R2 = x2)]

Q: Suppose we toss three independent, unbiased coins. Let C be r.v. equal to the number of
heads that appear and M be the r.v. that is equal to 1 if all the coins match. Are random
variables C and M independent?

Range(C ) = {0, 1, 2, 3} and Range(M) = {0, 1}. Pr[C = 3] = 1
8 and Pr[M = 1] = 1

4 .
Pr[(C = 3) ∩ (M = 1)] = 1

8 ̸= 1
32 = Pr[C = 3] Pr[M = 1]. Hence, C and M are not

independent.
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Independence - Examples

Q: If H1 is the indicator r.v. equal to one if the first toss is a heads, are H1 and M independent?
Pr[H1 = 1] = Pr[H1 = 0] = 1

2 , Pr[M = 1] = 1
4 , Pr[M = 0] = 3

4 .
Pr[H1 = 0 ∩M = 1] = Pr[{TTT}] = 1

8 = Pr[H1 = 0] Pr[M = 1].
Pr[H1 = 1 ∩M = 1] = Pr[{HHH}] = 1

8 = Pr[H1 = 1] Pr[M = 1].
Pr[H1 = 0 ∩M = 0] = Pr[{THH,THT ,TTH}] = 3

8 = Pr[H1 = 0] Pr[M = 0].
Pr[H1 = 1 ∩M = 0] = Pr[{HHT ,HTH,HTT}] = 3

8 = Pr[H1 = 1] Pr[M = 0].
Hence, H1 and M are independent.

Similar to events, random variables R1,R2, . . . ,Rn are mutually independent if for all
x1, x2, . . . , xn, events [R1 = x1], [R2 = x2], . . . [Rn = xn] are mutually independent.
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Independence - Examples

Q: Suppose that the successive daily changes of the price of a given stock are assumed to be
independent and identically distributed random variables – for each day i , the PDF is:

Pr[Daily change on day i ] = −3 (With p = 0.1,)

= −2 (With p = 0.1)

= −1 (With p = 0.2)

= 0 (With p = 0.3)

= 1 (With p = 0.2)

= 2 (With p = 0.1)

If E is the event that the stocks price will increase successively by 1, 2, and 0 points in the next
three days, compute E[IE ].

If Xi is the r.v. corresponding to the price increase on day i , we wish to compute
E[IE ] = Pr[E ] = Pr[X1 = 1 ∩ X2 = 2 ∩ X3 = 0]. X1, X2 and X3 are mutually independent and
hence, Pr[X1 = 1 ∩ X2 = 2 ∩ X3 = 0] = Pr[X1 = 1] Pr[X2 = 2] Pr[X3 = 0] = 0.006.
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Independence of random variables

Q: If R1 and R2 are not independent, is E[R1 + R2] = E[R1] + E[R2]?

Yes! Recall the derivation of the linearity of expectation. We never assumed that R1 and R2 are
independent for the proof and the linearity of expectation holds regardless of whether the random
variables are independent.

Q: If R1 and R2 are independent, is E[R1R2] = E[R1]E[R2]? Yes!

E[R1R2] =
∑

x∈Range(R1R2)

x Pr[R1R2 = x ] =
∑

r1∈Range(R1),r2∈Range(R2)

r1r2 Pr[R1 = r1 ∩ R2 = r2]

=
∑

r1∈Range(R1)

∑
r2∈Range(R2)

r1r2 Pr[R1 = r1 ∩ R2 = r2]

=
∑

r1∈Range(R1)

∑
r2∈Range(R2)

r1r2 Pr[R1 = r1] Pr[R2 = r2]

=
∑

r1∈Range(R1)

r1 Pr[R1 = r1]
∑

r2∈Range(R2)

r2 Pr[R2 = r2] = E[R1]E[R2]
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Independence of random variables

Alternate definition of independence – two random variables R1 and R2 are independent if for all
x1 ∈ Range(R1) and x2 ∈ Range(R2),

Pr[(R1 = x1)|(R2 = x2)] = Pr[(R1 = x1)]

Pr[(R2 = x2)|(R1 = x1)] = Pr[(R2 = x2)]

Intuitively, this means that conditioning on the value of R2 does not change the probability of
the event R1 = x1, and vice-versa.
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Expectation - Examples

Q: Suppose there is a dinner party where n people check in their coats. The coats are mixed up
during dinner, so that afterward each person receives a random coat. In particular, each person
gets their own coat with probability 1

n . What is the expected number of people who get their
own coat?

Let G be the number of people that get their own coat. We wish to compute E[G ]. Define Gi to
be the indicator r.v. that person i gets their own coat. Observe that G = G1 +G2 + . . .+Gn and
by linearity of expectation E[G ] = E[G1] + E[G2] + . . .+ E[Gn]. For each i , E[Gi ] = Pr[Gi ] =

1
n .

Hence, E[G ] = 1 meaning that on average one person will correctly receive their coat.

Q: If Gi is the indicator r.v. that person i gets their own coat, are the random variables
G1,G2, . . .Gn mutually independent?

No. Since if G1 = G2 = . . .Gn−1 = 1, then,
Pr[Gn = 1|(G1 = 1∩G2 = 1∩ . . .∩Gn−1 = 1)] = 1 ̸= 1

n = Pr[Gn = 1]. Notice that we have used
the linearity of expectation for the Gi ’s even though these r.v. are not mutually independent.
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Expectation - Examples

For a random variable X : S → V and a function g : V → R, we define E[g(X )] as follows:

E[g(X )] :=
∑

x∈Range(X )

g(x) Pr[X = x ]

If g(x) = x for all x ∈ Range(X ), then E[g(X )] = E[X ].

Q: For a standard dice, if X is the r.v. corresponding to the number that comes up on the dice,
compute E[X 2] and (E[X ])2

For a standard dice, X ∼ Uniform({1, 2, 3, 4, 5, 6}) and hence,

E[X 2] =
∑

x∈{1,2,3,4,5,6}

x2 Pr[X = x ] =
1
6
[
12 + 22 + . . .+ 62] = 91

6

(E[X ])2 =

 ∑
x∈{1,2,3,4,5,6}

x Pr[X = x ]

2

=

(
1
6
[1 + 2 + . . .+ 6]

)2

=
49
4
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Questions?
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Joint distribution

For a given experiment, we are often interested not only in the PDFs of individual random
variables but also in the relationships between two or more random variables. For example, we
might be interested in the mean time of failure and its connection with different number of
components in the system.

A joint distribution between r.v’s X and Y can be specified by its joint PDF as follows:

PDFX ,Y [x , y ] = Pr[X = x ∩ Y = y ]

If X and Y are independent random variables, PDFX ,Y [x , y ] = PDFX [x ]PDFY [y ].

If Range[X ] = {x1, x2, . . . xn}, Range[Y ] = {y1, y2, . . . yn}, then for x ∈ Range(X ),
[X = x ] = [X = x ∩ y = y1] ∪ [X = x ∩ y = y2] ∪ . . . ∪ [X = x ∩ y = yn] =⇒ Pr[X = x ] =

Pr[X = x ∩ y = y1] + Pr[X = x ∩ y = y2] + . . .+ Pr[X = x ∩ y = yn].

=⇒ PDFX [x ] =
∑
i

PDFX ,Y [x , yi ]

Hence, we can obtain the distribution for each r.v. from the joint distribution by “marginalizing”
over the other r.v’s. 10



Joint distribution - Examples

Q: Suppose that 3 batteries are randomly chosen from a group of 3 new, 4 used but still working,
and 5 defective batteries. If we let X and Y denote, respectively, the number of new and used
but still working batteries that are chosen, completely specify PDFX ,Y . For i ∈ [3], j ∈ [3],

PDFX ,Y [i , j ] = Pr[X = i ∩ Y = j |X + Y ≤ 3] = (3i ) (
4
j) (

5
3−i−j)

(12
3 )

.

PDFX ,Y [0, 0] =
(53)
(12

3 )
= 10/220, PDFX ,Y [1, 2] =

(31) (
4
2) (

5
2)

(12
3 )

= 18/220.
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Questions?
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Deviation from the Mean

We have developed tools to calculate the mean of random variables. Getting a handle on the
expectation is useful because it tell us what would happen on average.

Summarizing the PDF using the mean is typically not enough. We also want to know how
“spread” the distribution is.

Example: Consider three random variables W , Y and Z whose PDF’s can be given as:

W = 0 (with p = 1)

Y = −1 (with p = 1/2)

= +1 (with p = 1/2)

Z = −1000 (with p = 1/2)

= +1000 (with p = 1/2)

Though E[W ] = E[Y ] = E[Z ] = 0, these distributions are quite different. Z can take values
really far away from its expected value, while W can take only one value equal to the mean.

Hence, we want to understand how much does a random variable “deviate” from its mean. 12



Variance

Standard way to measure the deviation from the mean is to calculate the variance. For r.v. X ,

Var[X ] = E[(X − E[X ])2] =
∑

x∈Range(X )

(x − µ)2 Pr[X = x ] (where µ := E[X ])

Intuitively, the variance measures the weighted (by the probability) average of how far the
random variable is from the mean µ.

Q: If X ∼ Ber(p), compute Var[X ]. Since X is a Bernoulli random variable, X = 1 with
probability p and X = 0 with probability 1− p. Recall that E[X ] = µ = (0)(1− p) + (1)(p) = p.

Var[X ] =
∑

x∈{0,1}

(x − p)2 Pr[X = x ] = (0 − p)2 Pr[X = 0] + (1 − p)2 Pr[X = 1]

= p2(1 − p) + (1 − p)2p = p(1 − p)[p + 1 − p] = p(1 − p).

For a Bernoulli r.v. X , Var[X ] = p(1− p) ≤ 1
4 . Hence, the variance is maximum when p = 1/2

(equal probability of getting heads/tails).
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Variance

Var[X ] = E[(X − E[X ])2] =
∑

x∈Range(X )

(x − µ)2 Pr[X = x ]

=
∑

x∈Range(X )

(x2 − 2µx + µ2) Pr[X = x ]

=
∑

x∈Range(X )

(x2 Pr[X = x ])− (2µx Pr[X = x ]) + (µ2) Pr[X = x ]

=
∑

x∈Range(X )

x2 Pr[X = x ]− 2µ
∑

x∈Range(X )

x Pr[X = x ] + µ2
∑

x∈Range(X )

Pr[X = x ]

(Since µ is a constant does not depend on the x in the sum.)

= E[X 2]− 2µE[X ] + µ2
∑

x∈Range(X )

Pr[X = x ] (Definition of E[X ] and E[X 2])

= E[X 2]− 2µ2 + µ2 (Definition of µ)

=⇒ Var[X ] = E[X 2]− µ2 = E[X 2]− (E[X ])2. 14



Back to throwing dice

Q: For a standard dice, if X is the r.v. corresponding to the number that comes up on the dice,
compute Var[X ]

Recall that, for a standard dice, X ∼ Uniform({1, 2, 3, 4, 5, 6}) and hence,

E[X 2] =
∑

x∈{1,2,3,4,5,6}

x2 Pr[X = x ] =
1
6
[
12 + 22 + . . .+ 62] = 91

6

(E[X ])2 =

 ∑
x∈{1,2,3,4,5,6}

x Pr[X = x ]

2

=

(
1
6
[1 + 2 + . . .+ 6]

)2

=
49
4

=⇒ Var[X ] =
91
6

− 49
4

≈ 2.917

In general, if X ∼ Uniform({v1, v2, . . . vn}),

Var[X ] =
[v2

1 + v2
2 + . . . v2

n ]

n
−
(
[v1 + v2 + . . . vn]

n

)2
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Variance - Examples

Q: Calculate Var[W ], Var[Y ] and Var[Z ] whose PDF’s are given as:

W = 0 (with p = 1)

Y = −1 (with p = 1/2)

= +1 (with p = 1/2)

Z = −1000 (with p = 1/2)

= +1000 (with p = 1/2)

Recall that E[W ] = E[Y ] = E[Z ] = 0.

Var[W ] = E[W 2]−E[W 2] = E[W 2] =
∑

w∈Range(W ) w
2 Pr[W = w ] = 02(1) = 0. The variance

of W is zero because it can only take one value and the r.v. does not “vary”.
Var[Y ] = E[Y 2] =

∑
y∈Range(Y ) y

2 Pr[Y = y ] = (−1)2(1/2) + (1)2(1/2) = 1.

Var[Z ] = E[Z 2] =
∑

z∈Range(Z) z
2 Pr[Z = z ] = (−1000)2(1/2) + (1000)2(1/2) = 106.

The variance of Z is the largest because it can take values that are far away from the mean.
Hence, the variance can be used to distinguish between r.v.’s that have the same mean. 16



Variance - Examples

Q: Game A: We win $2 with probability 2/3 and lose $1 with probability 1/3. Game B: We win
$1002 with probability 2/3 and lose $2001 with probability 1/3. Which game is better
financially? E[A] = 2

( 2
3

)
− 1

( 1
3

)
= $1. Similarly, E[B] = 1002

( 2
3

)
− 2001

( 1
3

)
= $1.

Hence, on average, the two games have the same payoff. To get more information, let us analyze
the variance. Var[A] = E[A2]− 1 = 22

( 2
3

)
+ (−1)2

( 1
3

)
− 1 = 2. Similarly, Var[B] = 2004002.

Intuitively, this means that the payoff in Game A is usually close to the expected value of $1, but
the payoff in Game B can deviate very far from this expected value. High variance is often
associated with high risk. For example, in ten rounds of Game A, we expect to make $10, but
could conceivably lose $10 instead (if we lose each game). On the other hand, in ten rounds of
game B, we also expect to make $10, but could actually lose more than $20000!
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Variance - Examples

Q: If R ∼ Geo(p), calculate Var[R].

Var[R] = E[R2]− (E[R])2 = E[R2]− 1
p2

Similar to Slide 13 of Lecture 14, let A be the event that we get a heads in the first toss. Using
the law of total expectation,

E[R2] = E[R2|A] Pr[A] + E[R2|Ac ] Pr[Ac ]

We know that, E[R2|A] = 1 (R2 = 1 if we get a heads in the first coin toss). Pr[A] = p. Hence,

E[R2] = (1)(p) + E[R2|Ac ](1 − p)

E[R2|Ac ] =
∑
k=1

k2 Pr[R = k |Ac ]

Pr[R = k| if first toss is a tails] = Pr[R = k − 1]

E[R2|Ac ] =
∑
k=1

k2 Pr[R = k − 1] =
∑
t=0

(t + 1)2 Pr[R = t] = E[(R + 1)2] (t = k − 1)
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Variance - Examples

Putting everything together,

E[R2] = (1)(p) + E[R2 + 2R + 1](1 − p) =⇒ p E[R2] = p + 2(1 − p)E[R] + (1 − p)E[1]

=⇒ pE[R2] = p + 2(1 − p)
1
p
+ (1 − p)

=⇒ E[R2] =
2(1 − p)

p2 +
1
p

=⇒ E[R2] =
2 − p

p2

=⇒ Var[R] =
2 − p

p2 − 1
p2 =

1 − p

p2
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Questions?
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