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Recap

A distribution can be specified by its probability density function (PDF) (denoted by f ).

Bernoulli Distribution: If random variable R follows the Bernoulli distribution i.e. R ∼ Ber(p),
then fp(0) = 1 − p, fp(1) = p.

Uniform Distribution: If random variable R : S → V follows the Uniform distribution i.e.
R ∼ Uniform(V ), then for all v ∈ V , f (v) = 1/|V |.

Binomial Distribution: If random variable R follows the Binomial distribution i.e.
R ∼ Bin(n, p), then fn,p(k) =

(
n
k

)
pk(1 − p)n−k .

Geometric Distribution: If random variable R follows the Geometric distribution i.e.
R ∼ Geo(p), then fp(k) = (1 − p)k−1p.
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Recap

Expectation/mean of a random variable R is denoted by E[R] and “summarizes” its distribution.
Formally, E[R] :=

∑
ω∈S Pr[ω]R[ω]

Example: When throwing a standard dice, if R is the random variable equal to the number on
the dice. E[R] =

∑
i∈{1,2,...,6}

1
6 [i ] =

7
2 .

Alternate definition of expectation: E[R] =
∑

x∈Range(R) x Pr[R = x ].

This definition does not depend on the sample space.

Example: If IA is the indicator random variable for event A, then
E[IA] = Pr[IA = 1](1) + Pr[IA = 0](0) = Pr[A]. For IA, the expectation is equal to the
probability that event A happens.

Linearity of Expectation: For n random variables R1,R2, . . . ,Rn and constants a1, a2, . . . , an,
E
[∑n

i=1 aiRi

]
=

∑n
i=1 ai E[Ri ].
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Recap

If R ∼ Bernoulli(p), E[R] = p. Example: When tossing a coin, if R is the random variable equal
to 1 if we get a heads.

If R ∼ Uniform({v1, . . . , vn}), E[R] = v1+v2+...+vn
n . Example: When throwing an n-sided dice

with numbers v1, . . . vn, if R is the random variable equal to the number.

If R ∼ Bin(n, p), E[R] = np. Example: When tossing n independent coins, if R is the random
variable equal to the number of heads.

If R ∼ Geo(p), E[R] = 1
p . Example: When tossing a coin repeatedly, if R is the random variable

equal to the number of tosses required to get the first heads.
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Expectation - Examples

Q: We throw a standard dice, and define a random variable R which is equal to 1 if we get an
even number and 0 otherwise. What is the distribution of R? What is E[R]? Ans: Ber(1/2), 1

2

Q: We throw 10 independent dice and define R to be the random variable equal to the number
of dice that have an even number. What is the distribution of R? What is E[R]? Ans:
Bin(10, 1/2), 5

Q: We repeatedly and independently throw the dice until we get an even number. We define a
random variable R equal to the number of throws we need to get an even number. What is the
distribution of R? What is E[R]? Ans: Geo(1/2), 2.
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Expectation - Examples - Coupon Collector Problem

Q: In a game started by a coffee shop, each time we buy a coffee, we get a coupon. Each
coupon has a color (amongst n different colors) and each time, the color of the coupon is
selected uniformly at random from amongst the n colors. If we collect at least one coupon of
each color, we can claim a free coffee. On average, how many coupons should we collect (coffees
we should buy) to claim the prize?

Suppose we get the following sequence of coupons:

blue, green, green, red , blue, orange, blue, orange, gray

Let us partition this sequence into segments such that a segment ends when we collect a coupon
of a new color we did not have before. For this example,

blue︸︷︷︸
S1

green︸ ︷︷ ︸
S2

green, red︸ ︷︷ ︸
S3

blue, orange︸ ︷︷ ︸
S4

blue, orange, gray︸ ︷︷ ︸
S5

If the number of segments is equal to n, by definition, we will have collected coupons of the n

different colors. Define Xk to be the random variable equal to the length of segment Sk and T

to be the total number of coupons required to have at least one coupon per color. 5



Expectation - Examples - Coupon Collector Problem

T = X1 + X2 + . . .Xn. We wish to compute E[T ]. By linearity of expectation,
E[T ] = E[X1] + E[X2] + . . .+ E[Xn].

Let us calculate E[Xk ]. If we are on stage k , we have seen k − 1 colors before. Hence, the
probability of seeing a new (one that we have not seen before) colored coupon in Sk is n−(k−1)

n .

Xk ∼ Geo
(

n−(k−1)
n

)
, and we know that E[Xk ] =

n
n−k+1 .

E[T ] =
n∑

k=1

n

n − k + 1
= n

[
1
n
+

1
n − 1

+ . . .+
1
1

]
≤ n

[
1 +

∫ n

1

dx

x

]
= n [1 + ln(n)] ≤ 2n ln(n)

We also know that E[T ] ≥ n ln(n+ 1). Hence, E[T ] = O(n ln(n)), meaning that we need to buy
O(n ln(n)) coffees to collect coupons of n colors and get a free coffee. 6



Questions?
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Max Cut

Given a graph G = (V, E), partition the graph’s vertices into two complementary sets S and T ,
such that the number of edges between the set S and the set T is as large as possible.

Max Cut has applications to VLSI circuit design.

Equivalently, find a set U ⊆ V of vertices that solve the following

max
U⊆V

|δ(U)|where δ(U) := {(u, v) ∈ E|u ∈ U and v /∈ U}

Here, δ(U) is referred to as the “cut” corresponding to the set U .
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Max Cut

Max Cut is NP-hard (Karp, 1972), meaning that there is no polynomial (in |E|) time
algorithm that solves Max Cut exactly.
We want to find an approximate solution U such that, if OPT is the size of the optimal cut,
then, |δ(U)| ≥ αOPT where α ∈ (0, 1) is the multiplicative approximation factor.
Randomized algorithm that guarantees an approximate solution with α = 1

2 with probability
close to 1 (Erdos, 1967).
Algorithm with α = 0.878. (Goemans and Williamson, 1995).
Under some technical conditions, no efficient algorithm has α > 0.878 (Khot et al, 2004).

We will use Erdos’ randomized algorithm and first prove the result in expectation. We wish to
prove that for U returned by Erdos’ algorithm,

E[|δ(U)|] ≥ 1
2
OPT

. Algorithm: Select U to be a random subset of V i.e. for each vertex v , choose v to be in
the set U independently with probability 1

2 (do not even look at the edges!).
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Max Cut

Claim: For Erdos’ algorithm, E[|δ(U)|] ≥ 1
2OPT .

Proof: For each edge (u, v) ∈ E , let Xu,v be the indicator random variable equal to 1 iff the
event Eu,v = {(u, v) ∈ δ(U)} happens.

E[|δ(U)|] = E

 ∑
(u,v)∈E

Xu,v

 =
∑

(u,v)∈E

E [Xu,v ] =
∑

(u,v)∈E

Pr[Eu,v ]

Pr[Eu,v ] = Pr[(u, v) ∈ δ(U)] = Pr [(u ∈ U ∩ v /∈ U) ∪ (u /∈ U ∩ v ∈ U)]
= Pr [(u ∈ U ∩ v /∈ U)] + Pr [(u /∈ U ∩ v ∈ U)]

Pr[Eu,v ] = Pr[u ∈ U ] Pr[v /∈ U ] + Pr[u /∈ U ] Pr[v ∈ U ] = 1
2

1
2
+

1
2

1
2
=

1
2
.

=⇒ E[|δ(U)|] =
∑

(u,v)∈E

Pr[Eu,v ] =
|E|
2

≥ OPT
2

.

Later in the course, we will prove that |δ(U)| ≥ OPT
2 with probability close to 1.
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Questions?
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Conditional Expectation

Similar to probabilities, expectations can be conditioned on some event.

For random variable R, the expected value of R conditioned on an event A is given by:

E[R|A] =
∑

x∈Range(R)

x Pr[R = x |A]

Q: If we throw a standard dice and define R to be the random variable equal to the number that
comes up, what is the expected value of R given that the number is at most 4? A is the event
that the number is at most 4. Pr[R = 1|A] = Pr[(R=1)∩A]

Pr[A] = Pr[R=1]
Pr[A] = 1/6

4/6 = 1/4. Similarly,
Pr[R = 2|A] = Pr[R = 3|A] = Pr[R = 4|A] = 1

4 and Pr[R = 5|A] = Pr[R = 6|A] = 0.

E[R|A] =
∑

x∈{1,2,3,4}

x Pr[R = x |A] = 1
4
[1 + 2 + 3 + 4] =

5
2
.

Q: What is the expected value of R given that the number is at least 4? Ans:
E[R|A] =

∑
x∈{4,5,6} x Pr[R = x |A] = 1

3 [4 + 5 + 6] = 5.
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Law of Total Expectation

If R is a random variable S → V and events A1,A2, . . .An form a partition of the sample space,
then,

E[R] =
∑
i

E[R|Ai ] Pr[Ai ]

E[R] =
∑

x∈Range(R)

x Pr[R = x ] =
∑

x∈Range(R)

x
∑
i

Pr[R = x |Ai ] Pr[Ai ]

=
∑
i

Pr[Ai ]
∑

x∈Range(R)

x Pr[R = x |Ai ]

=
∑
i

Pr[Ai ]E[R|Ai ].
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Conditional Expectation - Examples

Q: Suppose that 49.6% of the people in the world are male and the rest female. If the expected
height of a randomly chosen male is 5 feet 11 inches, while the expected height of a randomly
chosen female is 5 feet 5 inches, what is the expected height of a randomly chosen person?

Define H to be the random variable equal to the height (in feet) of a randomly chosen person.
Define M to be the event that the person is male and F the event that the person is female.
We wish to compute E[H] and we know that E[H|M] = 5 + 11

12 and E[H|F ] = 5 + 5
12 .

Pr[M] = 0.496 and Pr[F ] = 1 − 0.496 = 0.504.
Hence, E[H] = E[H|M] Pr[M] + E[H|F ] Pr[F ] = 71

12 (0.496) + 65
12 (0.504).
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Conditional Expectation - Examples

Recall that if R ∼ Geo(p), E[R] = 1/p. To derive this, we computed the following sum
E[R] =

∑
k=1 k (1 − p)k−1p. Let’s use conditional expectation to do it in a simpler way.

For our coin tossing example, define R to be the random variable equal to the number of coin
tosses required to get the first heads. Let A be the event that we get a heads in the first toss.
Using the law of total expectation,

E[R] = E[R|A] Pr[A] + E[R|Ac ] Pr[Ac ]

We know that, E[R|A] = 1 (R = 1 if we get a heads in the first coin toss). Pr[A] = p. Hence,

E[R] = (1)(p) + E[R|Ac ](1 − p)

E[R|Ac ] is the expected number of tosses required to get the first heads if we do not get a
heads on the first toss. Hence, E[R|Ac ] = E[R] + 1.

E[R] = (1)(p) + [1 + E[R]](1 − p) =⇒ E[R] = 1 + E[R]− pE[R] =⇒ E[R] =
1
p
.
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Questions?
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Randomized Quick Select

Given an array A of n distinct numbers, return the k th smallest element in A for k ∈ [1, n].

Algorithm Randomized Quick Select
1: function QuickSelect(A, k)
2: If Length(A) = 1, return A[1].
3: Select p ∈ A uniformly at random.
4: Construct sets Left := {x ∈ A|x < p} and Right := {x ∈ A|x > p}.
5: r = |Left|+ 1 {Element p is the r th smallest element in A.}
6: if k = r then
7: return p

8: end if
9: if k < r then

10: QuickSelect(Left, k)
11: else
12: QuickSelect(Right, k − r)
13: end if 14



Randomized QuickSelect

If A = {2, 7, 0, 1, 3} and we wish to find the 2nd smallest element meaning that k = 2.
According to the algorithm, p ∼ Uniform(A). Say p = 3.

Then after step 1, Left = {0, 1, 2} and Right = {7}. r := |Left|+ 1 = 3 + 1 = 4. Since r > k ,
we recurse on the left-hand side by calling the algorithm on {0, 1, 2} with k = 2.

p ∼ Uniform({0, 1, 2}). Say p = 1. After step 2, Left = {0} and Right = {2}.
r := |Left|+ 1 = 1 + 1 = 2. Since r = k , we terminate the recursion and return p = 1 as the
second-smallest element in A.

Q: Run the algorithm if p = 0 in the first step? Ans: Left = {} and Right = {1, 2, 3, 7}. Hence
r = 1 < k = 2. Hence we will recurse on the right-hand side by calling the algorithm on
{1, 2, 3, 7} with k = 1.

Q: Run the algorithm if p = 1 in the first step? Ans: Left = {0} and Right = {2, 3, 7}. Hence
r = 1 + 1 = 2. Hence we will return the pivot element p = 1.
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Randomized Quick Select – Analysis

Alternate way: Sort the elements in A and return the k th element in the sorted list. Uses
O (n log(n)) comparisons.

Q: Can Randomized Quick Select do better – what is the maximum number of comparisons
required by Randomized Quick Select (i) in the worst-case and (ii) in expectation (over the pivot
selection)?

Claim: For any array A with n distinct elements, and for any k ∈ [n], Randomized Quick Select
performs fewer than 8n comparisons in expectation.

In order to prove this claim, we will need to prove the following Lemma.

Lemma: The child sub-problem’s array (either Left or Right) after the partitioning (in Line 4 of
the algorithm) has expected size smaller than 7n

8 .
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Randomized Quick Select – Analysis

Let us define a “good” event E that the randomly chosen pivot splits the array roughly in half.
Formally, if n is the length of the array, then E is the event that r ∈

(
n
4 ,

3n
4

]
(for simplicity, let us

assume that n is divisible by 4.) Since r is chosen randomly, Pr[E ] = 3n/4−n/4
n = 1

2 .

Recall that |Left| = r − 1 and |Right| = n − r . Hence if event E happens, then |Left| < 3n
4 and

|Right| < 3n
4 . Hence, |Child| < 3n

4 . If event E does not happen, in the worst-case, |Child| < n.
By using the law of total expectation,

E[|Child|] = E[|Child| |E ] Pr[E ] + E[|Child| |Ec ] Pr[Ec ]

<
3n
4

1
2
+ (n)

1
2
=

7n
8
.

Hence on average, the size of the child sub-problem is smaller than 7n
8 , proving the lemma.
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Randomized Quick Select – Analysis

In order to upper-bound the total number of comparisons, we use the Lemma with an induction
on n. Recall that we need to prove that Randomized Quick Select requires fewer than 8n
comparisons in expectation.

Base case: If n = 1, then we require 0 < 8 comparisons. Hence the base case is satisfied.

Inductive Step:

E[Total number of comparisons for size n array]

= E[(n − 1) + Total number of comparisons in child sub-problem]

= (n − 1) + E[Total number of comparisons in child sub-problem] (Linearity of expectation)

< (n − 1) + 8E[|Child|] (Induction hypothesis)

< (n − 1) + 8
7n
8

< 8n. (Lemma)

Hence we have proved our claim that for any k ∈ [n], on average, Randomized Quick Select
requires fewer than 8n comparisons.
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Questions?
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Independence of random variables

We define two random variables R1 and R2 to be independent if for all x1 ∈ Range(R1) and
x2 ∈ Range(R2), events [R1 = x1] and [R2 = x2] are independent. More formally, we require,

Pr[(R1 = x1) ∩ (R2 = x2)] = Pr[(R1 = x1)] Pr[(R2 = x2)]

Q: Suppose we toss three independent, unbiased coins. Let C be r.v. equal to the number of
heads that appear and M be the r.v. that is equal to 1 if all the coins match. Are random
variables C and M independent?

Range(C ) = {0, 1, 2, 3} and Range(M) = {0, 1}. Pr[C = 3] = 1
8 and Pr[M = 1] = 1

4 .
Pr[(C = 3) ∩ (M = 1)] = 1

8 ̸= 1
32 = Pr[C = 3] Pr[M = 1]. Hence, C and M are not

independent.
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