CMPT 210: Probability and Computation

Lecture 14

Sharan Vaswani
June 28, 2022

Recap

A distribution can be specified by its probability density function (PDF) (denoted by f).
Bernoulli Distribution: If random variable R follows the Bernoulli distribution i.e. $R \sim \operatorname{Ber}(p)$, then $f_{p}(0)=1-p, f_{p}(1)=p$.
Uniform Distribution: If random variable $R: \mathcal{S} \rightarrow V$ follows the Uniform distribution i.e. $R \sim \operatorname{Uniform}(V)$, then for all $v \in V, f(v)=1 /|V|$.
Binomial Distribution: If random variable R follows the Binomial distribution i.e. $R \sim \operatorname{Bin}(n, p)$, then $f_{n, p}(k)=\binom{n}{k} p^{k}(1-p)^{n-k}$.
Geometric Distribution: If random variable R follows the Geometric distribution i.e. $R \sim \operatorname{Geo}(p)$, then $f_{p}(k)=(1-p)^{k-1} p$.

Recap

Expectation/mean of a random variable R is denoted by $\mathbb{E}[R]$ and "summarizes" its distribution.
Formally, $\mathbb{E}[R]:=\sum_{\omega \in \mathcal{S}} \operatorname{Pr}[\omega] R[\omega]$
Example: When throwing a standard dice, if R is the random variable equal to the number on the dice. $\mathbb{E}[R]=\sum_{i \in\{1,2, \ldots, 6\}} \frac{1}{6}[i]=\frac{7}{2}$.
Alternate definition of expectation: $\mathbb{E}[R]=\sum_{x \in \operatorname{Range}(R)} \times \operatorname{Pr}[R=x]$.
This definition does not depend on the sample space.
Example: If \mathcal{I}_{A} is the indicator random variable for event A, then
$\mathbb{E}\left[\mathcal{I}_{A}\right]=\operatorname{Pr}\left[\mathcal{I}_{A}=1\right](1)+\operatorname{Pr}\left[\mathcal{I}_{A}=0\right](0)=\operatorname{Pr}[A]$. For \mathcal{I}_{A}, the expectation is equal to the probability that event A happens.

Linearity of Expectation: For n random variables $R_{1}, R_{2}, \ldots, R_{n}$ and constants $a_{1}, a_{2}, \ldots, a_{n}$, $\mathbb{E}\left[\sum_{i=1}^{n} a_{i} R_{i}\right]=\sum_{i=1}^{n} a_{i} \mathbb{E}\left[R_{i}\right]$.

Recap

If $R \sim \operatorname{Bernoulli}(p), \mathbb{E}[R]=p$. Example: When tossing a coin, if R is the random variable equal to 1 if we get a heads.

If $R \sim \operatorname{Uniform}\left(\left\{v_{1}, \ldots, v_{n}\right\}\right), \mathbb{E}[R]=\frac{v_{1}+v_{2}+\ldots+v_{n}}{n}$. Example: When throwing an n-sided dice with numbers $v_{1}, \ldots v_{n}$, if R is the random variable equal to the number.
If $R \sim \operatorname{Bin}(n, p), \mathbb{E}[R]=n p$. Example: When tossing n independent coins, if R is the random variable equal to the number of heads.
If $R \sim \operatorname{Geo}(p), \mathbb{E}[R]=\frac{1}{p}$. Example: When tossing a coin repeatedly, if R is the random variable equal to the number of tosses required to get the first heads.

Expectation - Examples

Q: We throw a standard dice, and define a random variable R which is equal to 1 if we get an even number and 0 otherwise. What is the distribution of R ? What is $\mathbb{E}[R]$? Ans: $\operatorname{Ber}(1 / 2), \frac{1}{2}$ Q: We throw 10 independent dice and define R to be the random variable equal to the number of dice that have an even number. What is the distribution of R ? What is $\mathbb{E}[R]$? Ans: $\operatorname{Bin}(10,1 / 2), 5$

Q: We repeatedly and independently throw the dice until we get an even number. We define a random variable R equal to the number of throws we need to get an even number. What is the distribution of R ? What is $\mathbb{E}[R]$? Ans: $\mathrm{Geo}(1 / 2), 2$.

Expectation - Examples - Coupon Collector Problem

Q: In a game started by a coffee shop, each time we buy a coffee, we get a coupon. Each coupon has a color (amongst n different colors) and each time, the color of the coupon is selected uniformly at random from amongst the n colors. If we collect at least one coupon of each color, we can claim a free coffee. On average, how many coupons should we collect (coffees we should buy) to claim the prize?

Suppose we get the following sequence of coupons:
blue, green, green, red, blue, orange, blue, orange, gray

Let us partition this sequence into segments such that a segment ends when we collect a coupon of a new color we did not have before. For this example,

If the number of segments is equal to n, by definition, we will have collected coupons of the n different colors. Define X_{k} to be the random variable equal to the length of segment S_{k} and T to be the total number of coupons required to have at least one coupon per color.

Expectation - Examples - Coupon Collector Problem

$T=X_{1}+X_{2}+\ldots X_{n}$. We wish to compute $\mathbb{E}[T]$. By linearity of expectation, $\mathbb{E}[T]=\mathbb{E}\left[X_{1}\right]+\mathbb{E}\left[X_{2}\right]+\ldots+\mathbb{E}\left[X_{n}\right]$.

Let us calculate $\mathbb{E}\left[X_{k}\right]$. If we are on stage k, we have seen $k-1$ colors before. Hence, the probability of seeing a new (one that we have not seen before) colored coupon in S_{k} is $\frac{n-(k-1)}{n}$. $X_{k} \sim \operatorname{Geo}\left(\frac{n-(k-1)}{n}\right)$, and we know that $\mathbb{E}\left[X_{k}\right]=\frac{n}{n-k+1}$.

$$
\begin{aligned}
\mathbb{E}[T] & =\sum_{k=1}^{n} \frac{n}{n-k+1}=n\left[\frac{1}{n}+\frac{1}{n-1}+\ldots+\frac{1}{1}\right] \\
& \leq n\left[1+\int_{1}^{n} \frac{d x}{x}\right]=n[1+\ln (n)] \leq 2 n \ln (n)
\end{aligned}
$$

We also know that $\mathbb{E}[T] \geq n \ln (n+1)$. Hence, $\mathbb{E}[T]=O(n \ln (n))$, meaning that we need to buy $O(n \ln (n))$ coffees to collect coupons of n colors and get a free coffee.

Questions?

Max Cut

Given a graph $G=(\mathcal{V}, \mathcal{E})$, partition the graph's vertices into two complementary sets \mathcal{S} and \mathcal{T}, such that the number of edges between the set \mathcal{S} and the set \mathcal{T} is as large as possible.

Max Cut has applications to VLSI circuit design.

Equivalently, find a set $\mathcal{U} \subseteq \mathcal{V}$ of vertices that solve the following

$$
\max _{\mathcal{U} \subseteq \mathcal{V}}|\delta(\mathcal{U})| \text { where } \delta(\mathcal{U}):=\{(u, v) \in \mathcal{E} \mid u \in \mathcal{U} \text { and } v \notin \mathcal{U}\}
$$

Here, $\delta(\mathcal{U})$ is referred to as the "cut" corresponding to the set \mathcal{U}.

Max Cut

- Max Cut is NP-hard (Karp, 1972), meaning that there is no polynomial (in $|\mathcal{E}|$) time algorithm that solves Max Cut exactly.
- We want to find an approximate solution \mathcal{U} such that, if OPT is the size of the optimal cut, then, $|\delta(\mathcal{U})| \geq \alpha$ OPT where $\alpha \in(0,1)$ is the multiplicative approximation factor.
- Randomized algorithm that guarantees an approximate solution with $\alpha=\frac{1}{2}$ with probability close to 1 (Erdos, 1967).
- Algorithm with $\alpha=0.878$. (Goemans and Williamson, 1995).
- Under some technical conditions, no efficient algorithm has $\alpha>0.878$ (Khot et al, 2004).

We will use Erdos' randomized algorithm and first prove the result in expectation. We wish to prove that for \mathcal{U} returned by Erdos' algorithm,

$$
\mathbb{E}[|\delta(\mathcal{U})|] \geq \frac{1}{2} O P T
$$

Algorithm: Select \mathcal{U} to be a random subset of \mathcal{V} i.e. for each vertex v, choose v to be in the set \mathcal{U} independently with probability $\frac{1}{2}$ (do not even look at the edges!).

Max Cut

Claim: For Erdos' algorithm, $\mathbb{E}[|\delta(\mathcal{U})|] \geq \frac{1}{2} O P T$.
Proof: For each edge $(u, v) \in \mathcal{E}$, let $X_{u, v}$ be the indicator random variable equal to 1 iff the event $E_{u, v}=\{(u, v) \in \delta(\mathcal{U})\}$ happens.

$$
\begin{aligned}
& \mathbb{E}[|\delta(\mathcal{U})|]=\mathbb{E}\left[\sum_{(u, v) \in \mathcal{E}} X_{u, v}\right]=\sum_{(u, v) \in \mathcal{E}} \mathbb{E}\left[X_{u, v}\right]=\sum_{(u, v) \in \mathcal{E}} \operatorname{Pr}\left[E_{u, v}\right] \\
& \operatorname{Pr}\left[E_{u, v}\right]=\operatorname{Pr}[(u, v) \in \delta(\mathcal{U})]=\operatorname{Pr}[(u \in \mathcal{U} \cap v \notin \mathcal{U}) \cup(u \notin \mathcal{U} \cap v \in \mathcal{U})] \\
& =\operatorname{Pr}[(u \in \mathcal{U} \cap v \notin \mathcal{U})]+\operatorname{Pr}[(u \notin \mathcal{U} \cap v \in \mathcal{U})] \\
& \operatorname{Pr}\left[E_{u, v}\right]=\operatorname{Pr}[u \in \mathcal{U}] \operatorname{Pr}[v \notin \mathcal{U}]+\operatorname{Pr}[u \notin \mathcal{U}] \operatorname{Pr}[v \in \mathcal{U}]=\frac{1}{2} \frac{1}{2}+\frac{1}{2} \frac{1}{2}=\frac{1}{2} . \\
& \Longrightarrow \mathbb{E}[|\delta(\mathcal{U})|]=\sum_{(u, v) \in \mathcal{E}} \operatorname{Pr}\left[E_{u, v}\right]=\frac{|\mathcal{E}|}{2} \geq \frac{\text { OPT }}{2} .
\end{aligned}
$$

Later in the course, we will prove that $|\delta(\mathcal{U})| \geq \frac{\mathrm{OPT}}{2}$ with probability close to 1 .

Questions?

Conditional Expectation

Similar to probabilities, expectations can be conditioned on some event.
For random variable R, the expected value of R conditioned on an event A is given by:

$$
\mathbb{E}[R \mid A]=\sum_{x \in \operatorname{Range}(R)} x \operatorname{Pr}[R=x \mid A]
$$

Q: If we throw a standard dice and define R to be the random variable equal to the number that comes up, what is the expected value of R given that the number is at most 4 ? A is the event that the number is at most 4. $\operatorname{Pr}[R=1 \mid A]=\frac{\operatorname{Pr}[(R=1) \cap A]}{\operatorname{Pr}[A]}=\frac{\operatorname{Pr}[R=1]}{\operatorname{Pr}[A]}=\frac{1 / 6}{4 / 6}=1 / 4$. Similarly, $\operatorname{Pr}[R=2 \mid A]=\operatorname{Pr}[R=3 \mid A]=\operatorname{Pr}[R=4 \mid A]=\frac{1}{4}$ and $\operatorname{Pr}[R=5 \mid A]=\operatorname{Pr}[R=6 \mid A]=0$.

$$
\mathbb{E}[R \mid A]=\sum_{x \in\{1,2,3,4\}} x \operatorname{Pr}[R=x \mid A]=\frac{1}{4}[1+2+3+4]=\frac{5}{2} .
$$

Q: What is the expected value of R given that the number is at least 4? Ans:
$\mathbb{E}[R \mid A]=\sum_{x \in\{4,5,6\}} \times \operatorname{Pr}[R=x \mid A]=\frac{1}{3}[4+5+6]=5$.

Law of Total Expectation

If R is a random variable $\mathcal{S} \rightarrow V$ and events $A_{1}, A_{2}, \ldots A_{n}$ form a partition of the sample space, then,

$$
\begin{aligned}
& \mathbb{E}[R]=\sum_{i} \mathbb{E}\left[R \mid A_{i}\right] \operatorname{Pr}\left[A_{i}\right] \\
& \mathbb{E}[R]=\sum_{x \in \operatorname{Range}(R)} x \operatorname{Pr}[R=x]=\sum_{x \in \operatorname{Range}(R)} x \sum_{i} \operatorname{Pr}\left[R=x \mid A_{i}\right] \operatorname{Pr}\left[A_{i}\right] \\
&=\sum_{i} \operatorname{Pr}\left[A_{i}\right] \sum_{x \in \operatorname{Range}(R)} x \operatorname{Pr}\left[R=x \mid A_{i}\right] \\
&=\sum_{i} \operatorname{Pr}\left[A_{i}\right] \mathbb{E}\left[R \mid A_{i}\right] .
\end{aligned}
$$

Conditional Expectation - Examples

Q: Suppose that 49.6% of the people in the world are male and the rest female. If the expected height of a randomly chosen male is 5 feet 11 inches, while the expected height of a randomly chosen female is 5 feet 5 inches, what is the expected height of a randomly chosen person?

Define H to be the random variable equal to the height (in feet) of a randomly chosen person.
Define M to be the event that the person is male and F the event that the person is female.
We wish to compute $\mathbb{E}[H]$ and we know that $\mathbb{E}[H \mid M]=5+\frac{11}{12}$ and $\mathbb{E}[H \mid F]=5+\frac{5}{12}$.
$\operatorname{Pr}[M]=0.496$ and $\operatorname{Pr}[F]=1-0.496=0.504$.
Hence, $\mathbb{E}[H]=\mathbb{E}[H \mid M] \operatorname{Pr}[M]+\mathbb{E}[H \mid F] \operatorname{Pr}[F]=\frac{71}{12}(0.496)+\frac{65}{12}(0.504)$.

Conditional Expectation - Examples

Recall that if $R \sim \operatorname{Geo}(p), \mathbb{E}[R]=1 / p$. To derive this, we computed the following sum $\mathbb{E}[R]=\sum_{k=1} k(1-p)^{k-1} p$. Let's use conditional expectation to do it in a simpler way.
For our coin tossing example, define R to be the random variable equal to the number of coin tosses required to get the first heads. Let A be the event that we get a heads in the first toss. Using the law of total expectation,

$$
\mathbb{E}[R]=\mathbb{E}[R \mid A] \operatorname{Pr}[A]+\mathbb{E}\left[R \mid A^{c}\right] \operatorname{Pr}\left[A^{c}\right]
$$

We know that, $\mathbb{E}[R \mid A]=1$ ($R=1$ if we get a heads in the first coin toss). $\operatorname{Pr}[A]=p$. Hence,

$$
\mathbb{E}[R]=(1)(p)+\mathbb{E}\left[R \mid A^{c}\right](1-p)
$$

$\mathbb{E}\left[R \mid A^{c}\right]$ is the expected number of tosses required to get the first heads if we do not get a heads on the first toss. Hence, $\mathbb{E}\left[R \mid A^{c}\right]=\mathbb{E}[R]+1$.

$$
\mathbb{E}[R]=(1)(p)+[1+\mathbb{E}[R]](1-p) \Longrightarrow \mathbb{E}[R]=1+\mathbb{E}[R]-p \mathbb{E}[R] \Longrightarrow \mathbb{E}[R]=\frac{1}{p}
$$

Questions?

Randomized Quick Select

Given an array A of n distinct numbers, return the $k^{\text {th }}$ smallest element in A for $k \in[1, n]$.

```
Algorithm Randomized Quick Select
    1: function QuickSelect \((A, k)\)
    2: If Length \((A)=1\), return \(A[1]\).
    3: Select \(p \in A\) uniformly at random.
    4: Construct sets Left \(:=\{x \in A \mid x<p\}\) and Right \(:=\{x \in A \mid x>p\}\).
    5: \(r=\mid\) Left \(\mid+1\) \{Element \(p\) is the \(r^{\text {th }}\) smallest element in \(A\).\}
    6: if \(k=r\) then
    7: return \(p\)
    end if
    if \(k<r\) then
        QuickSelect(Left, \(k\) )
    else
        QuickSelect(Right, \(k-r\) )
    end if
```


Randomized QuickSelect

If $A=\{2,7,0,1,3\}$ and we wish to find the $2^{\text {nd }}$ smallest element meaning that $k=2$.
According to the algorithm, $p \sim \operatorname{Uniform}(A)$. Say $p=3$.
Then after step 1, Left $=\{0,1,2\}$ and Right $=\{7\} . r:=\mid$ Left $\mid+1=3+1=4$. Since $r>k$, we recurse on the left-hand side by calling the algorithm on $\{0,1,2\}$ with $k=2$.
$p \sim$ Uniform($\{0,1,2\}$). Say $p=1$. After step 2, Left $=\{0\}$ and Right $=\{2\}$.
$r:=\mid$ Left $\mid+1=1+1=2$. Since $r=k$, we terminate the recursion and return $p=1$ as the second-smallest element in A.
Q: Run the algorithm if $p=0$ in the first step? Ans: Left $=\{ \}$ and Right $=\{1,2,3,7\}$. Hence $r=1<k=2$. Hence we will recurse on the right-hand side by calling the algorithm on $\{1,2,3,7\}$ with $k=1$.

Q: Run the algorithm if $p=1$ in the first step? Ans: Left $=\{0\}$ and Right $=\{2,3,7\}$. Hence $r=1+1=2$. Hence we will return the pivot element $p=1$.

Randomized Quick Select - Analysis

Alternate way: Sort the elements in A and return the $k^{\text {th }}$ element in the sorted list. Uses $O(n \log (n))$ comparisons.

Q: Can Randomized Quick Select do better - what is the maximum number of comparisons required by Randomized Quick Select (i) in the worst-case and (ii) in expectation (over the pivot selection)?

Claim: For any array A with n distinct elements, and for any $k \in[n]$, Randomized Quick Select performs fewer than $8 n$ comparisons in expectation.

In order to prove this claim, we will need to prove the following Lemma.
Lemma: The child sub-problem's array (either Left or Right) after the partitioning (in Line 4 of the algorithm) has expected size smaller than $\frac{7 n}{8}$.

Randomized Quick Select - Analysis

Let us define a "good" event \mathcal{E} that the randomly chosen pivot splits the array roughly in half. Formally, if n is the length of the array, then \mathcal{E} is the event that $r \in\left(\frac{n}{4}, \frac{3 n}{4}\right]$ (for simplicity, let us assume that n is divisible by 4.) Since r is chosen randomly, $\operatorname{Pr}[\mathcal{E}]=\frac{3 n / 4-n / 4}{n}=\frac{1}{2}$.
Recall that \mid Left $\mid=r-1$ and \mid Right $\mid=n-r$. Hence if event \mathcal{E} happens, then \mid Left $\left\lvert\,<\frac{3 n}{4}\right.$ and \mid Right $\left\lvert\,<\frac{3 n}{4}\right.$. Hence, \mid Child $\left\lvert\,<\frac{3 n}{4}\right.$. If event \mathcal{E} does not happen, in the worst-case, \mid Child $\mid<n$. By using the law of total expectation,

$$
\begin{aligned}
\mathbb{E}[\mid \text { Child } \mid] & =\mathbb{E}[\mid \text { Child }| | \mathcal{E}] \operatorname{Pr}[\mathcal{E}]+\mathbb{E}\left[\mid \text { Child }| | \mathcal{E}^{c}\right] \operatorname{Pr}\left[\mathcal{E}^{c}\right] \\
& <\frac{3 n}{4} \frac{1}{2}+(n) \frac{1}{2}=\frac{7 n}{8} .
\end{aligned}
$$

Hence on average, the size of the child sub-problem is smaller than $\frac{7 n}{8}$, proving the lemma.

Randomized Quick Select - Analysis

In order to upper-bound the total number of comparisons, we use the Lemma with an induction on n. Recall that we need to prove that Randomized Quick Select requires fewer than $8 n$ comparisons in expectation.

Base case: If $n=1$, then we require $0<8$ comparisons. Hence the base case is satisfied.

Inductive Step:

$$
\begin{align*}
& \mathbb{E}[\text { Total number of comparisons for size } n \text { array }] \\
& =\mathbb{E}[(n-1)+\text { Total number of comparisons in child sub-problem }] \\
& =(n-1)+\mathbb{E}[\text { Total number of comparisons in child sub-problem }] \\
& <(n-1)+8 \mathbb{E}[\mid \text { Child }]] \\
& <(n-1)+8 \frac{7 n}{8}<8 n . \tag{Lemma}\\
& \text { (Induction hypothesis) } \\
& \text { (Lemma) }
\end{align*}
$$

Hence we have proved our claim that for any $k \in[n]$, on average, Randomized Quick Select requires fewer than $8 n$ comparisons.

Questions?

Independence of random variables

We define two random variables R_{1} and R_{2} to be independent if for all $x_{1} \in \operatorname{Range}\left(R_{1}\right)$ and $x_{2} \in \operatorname{Range}\left(R_{2}\right)$, events $\left[R_{1}=x_{1}\right]$ and $\left[R_{2}=x_{2}\right]$ are independent. More formally, we require,

$$
\operatorname{Pr}\left[\left(R_{1}=x_{1}\right) \cap\left(R_{2}=x_{2}\right)\right]=\operatorname{Pr}\left[\left(R_{1}=x_{1}\right)\right] \operatorname{Pr}\left[\left(R_{2}=x_{2}\right)\right]
$$

Q: Suppose we toss three independent, unbiased coins. Let C be r.v. equal to the number of heads that appear and M be the r.v. that is equal to 1 if all the coins match. Are random variables C and M independent?

Range $(C)=\{0,1,2,3\}$ and Range $(M)=\{0,1\} . \operatorname{Pr}[C=3]=\frac{1}{8}$ and $\operatorname{Pr}[M=1]=\frac{1}{4}$. $\operatorname{Pr}[(C=3) \cap(M=1)]=\frac{1}{8} \neq \frac{1}{32}=\operatorname{Pr}[C=3] \operatorname{Pr}[M=1]$. Hence, C and M are not independent.

