# CMPT 210: Probability and Computation 

Lecture 13

Sharan Vaswani
June 21, 2022

## Recap

A distribution can be specified by its probability density function (PDF) (denoted by $f$ ).
Bernoulli Distribution: $f_{p}(0)=1-p, f_{p}(1)=p$. Example: When tossing a coin such that $\operatorname{Pr}[$ heads $]=p$, random variable $R$ is equal to 1 if we get a heads (and equal to 0 otherwise). In this case, $R$ follows the Bernoulli distribution i.e. $R \sim \operatorname{Ber}(p)$.
Uniform Distribution: If $R: \mathcal{S} \rightarrow V$, then for all $v \in V, f(v)=1 /|V|$. Example: When throwing an $n$-sided die, random variable $R$ is the number that comes up on the die. $V=\{1,2, \ldots, n\}$. In this case, $R$ follows the Uniform distribution i.e. $R \sim \operatorname{Uniform}(1, n)$.
Binomial Distribution: $f_{n, p}(k)=\binom{n}{k} p^{k}(1-p)^{n-k}$. Example: When tossing $n$ independent coins such that $\operatorname{Pr}[$ heads $]=p$, random variable $R$ is the number of heads in $n$ coin tosses. In this case, $R$ follows the Binomial distribution i.e. $R \sim \operatorname{Bin}(n, p)$.
Geometric Distribution: $f_{p}(k)=(1-p)^{k-1} p$. Example: When repeatedly tossing a coin such that $\operatorname{Pr}[$ heads $]=p$, random variable $R$ is the number of tosses needed to get the first heads. In this case, $R$ follows the Geometric distribution i.e. $R \sim \operatorname{Geo}(p)$.

## Distributions - Examples

Q: Suppose we throw a standard die and $R$ is the random variable corresponding to the number on the die. We define a new random variable $X=2 R+1$. What is the $\mathrm{PDF}_{x}$ ?

Since $R$ is a uniform random variable and the domain of $\operatorname{PDF}_{R}=\{1,2, \ldots, \sigma\}$.
The domain of $\mathrm{PDF}_{X}$ is $\{3,5,7,9,11,13\}$.
$\operatorname{PDF}_{X}[3]=\operatorname{Pr}[X=3]=\operatorname{Pr}[2 R+1=3]=\operatorname{Pr}[R=1]=\frac{1}{6}$. Similarly, $\operatorname{PDF}_{X}[5]=\frac{1}{6}$. And we can conclude that $X$ follows the uniform distribution on $\{3,5,7,9,11,13\}$.
Q: Suppose $X=\max \{R-3,0\}$. What is the $P^{2} F_{X}$ ?
Ans: Domain of $\operatorname{PDF}_{X}=\{0,1,2,3\}$.
$\mathrm{PDF}_{X}[0]=\operatorname{Pr}[X=0]=\operatorname{PDF}_{R}[1]+\mathrm{PDF}_{R}[2]+\operatorname{PDF}_{R}[3]=\frac{1}{2}$.
$\mathrm{PDF}_{X}[4]=\mathrm{PDF}_{X}[5]=\mathrm{PDF}_{X}[6]=\frac{1}{6}$.
In general, if $Y=g(X)$, then for $y \in \operatorname{Domain}\left(\mathrm{PDF}_{Y}\right), \operatorname{PDF}_{Y}[y]=\sum_{x \in[y=g(x)]} \operatorname{PDF}_{X}[x]$.

## Distributions - Examples

Q: It is known that disks produced by a certain company will be defective with probability 0.01 independently of each other. The company sells the disks in packages of 10 and offers a money-back guarantee that at most 1 of the 10 disks is defective. What proportion of packages is returned? If someone buys three packages, what is the probability that exactly one of them will be returned?

Let $X$ be the random variable corresponding to the number of defective disks in a package. Let $E$ be the event that the package is returned. We wish to compute $\operatorname{Pr}[E]=\operatorname{Pr}[X>1] . X$ follows the Binomial distribution $\operatorname{Bin}(10,0.01)$. Hence,

$$
\begin{aligned}
\operatorname{Pr}[E]=\operatorname{Pr}[X>1] & =1-\operatorname{Pr}[X \leq 1]=1-\operatorname{Pr}[X=0]-\operatorname{Pr}[X=1] \\
& =1-\binom{10}{0}(0.99)^{10}-\binom{10}{1}(0.99)^{9}(0.01)^{1} \approx 0.05
\end{aligned}
$$

## Distributions - Examples

Q: It is known that disks produced by a certain company will be defective with probability 0.01 independently of each other. The company sells the disks in packages of 10 and offers a money-back guarantee that at most 1 of the 10 disks is defective. If someone buys three packages, what is the probability that exactly one of them will be returned?

Let $F$ be the event that someone bought 3 packages and exactly one of them is returned.
Ans 1: Let $E_{i}$ be the event that package $i$ is returned.

$$
\begin{aligned}
& F=\left(E_{1} \cap E_{2}^{c} \cap E_{3}^{c}\right) \cup\left(E_{1}^{c} \cap E_{2}^{c} \cap E_{3}\right) \cup\left(E_{1}^{c} \cap E_{2} \cap E_{3}^{c}\right) \\
& \operatorname{Pr}[F]=\operatorname{Pr}\left[E_{1}\right]\left(1-\operatorname{Pr}\left[E_{2}\right]\right)\left(1-\operatorname{Pr}\left[E_{3}\right]\right)+\left(1-\operatorname{Pr}\left[E_{1}\right]\right)\left(1-\operatorname{Pr}\left[E_{2}\right]\right) \operatorname{Pr}\left[E_{3}\right]+\ldots \\
& \operatorname{Pr}[F] \approx 3 \times(0.05)(0.95)(0.95) \approx 0.15 .
\end{aligned}
$$

Ans 2: Let $Y$ be the random variable corresponding to the number of packages returned. $Y$ follows the $\operatorname{Binomial}$ distribution $\operatorname{Bin}(3,0.05)$ and we wish to compute $\operatorname{Pr}[F]=\operatorname{Pr}[Y=1] \approx\binom{3}{1}(0.05)^{1}(0.95)^{2} \approx 0.15$.

## Distributions - Examples

Q: A communications system consists of $n$ components, each of which will independently function with probability $p$. The total system will be able to operate effectively if at least one of its components functions. What is the probability that the total system functions?

Answer 1: Let $E_{i}$ be the event that component $i$ functions. $\operatorname{Pr}\left[E_{i}\right]=p$. Let $F$ be the event that system functions. $\operatorname{Pr}[F]=\operatorname{Pr}\left[\cup_{i} E_{i}\right]=1-\operatorname{Pr}\left[\cap_{i} E_{i}^{c}\right]=1-(1-p)^{n}$.
Answer 2: If $X$ is the number of functioning components, $X$ follows the Binomial distribution $\operatorname{Bin}(n, p), \operatorname{Pr}[F]=\operatorname{Pr}[X \geq 1]=1-\operatorname{Pr}[X<1]=1-\operatorname{Pr}[X=0]=1-\binom{n}{0} p^{0}(1-p)^{n}$.
Q: The total system will be able to operate effectively if at least one-half of its 5 components function. What is the probability that the total system functions?
In this case, $\operatorname{Pr}[F]=\operatorname{Pr}[X \geq 3]=\binom{n}{3} p^{3}(1-p)^{2}+\binom{n}{4} p^{4}(1-p)^{1}+\binom{n}{5} p^{5}(1-p)^{0}$.

## Distributions - Examples

Q: You are randomly and independently throwing darts. The probability that you hit the bullseye in throw $i$ is $p$. Once you hit the bullseye you win and can go collect your reward. What is the probability that you win after exactly $k$ throws?

The number of throws $(T)$ to hit the bullseye follows a geometric distribution $\operatorname{Geo}(p)$ and we wish to compute $\operatorname{Pr}[T=k]=(1-p)^{k-1} p$.
Q: What is the probability you win in less than $k$ throws?
Answer 1: If $E$ is the event that we win in less than $k$ throws, $\operatorname{Pr}[E]=\operatorname{Pr}[T<k]=\sum_{i=1}^{k-1} \operatorname{Pr}[T=i]=p \sum_{i=1}^{k-1}(1-p)^{i-1}=1-(1-p)^{k-1}$.

## Answer 2:

$\operatorname{Pr}[E]=1-\operatorname{Pr}\left[E^{c}\right]=1-\operatorname{Pr}[$ do not hit the bullseye in $k-1$ throws $]=1-(1-p)^{k-1}$.

## Questions?

## Expectation of Random Variables

Recall that a random variable $R$ is a total function from $\mathcal{S} \rightarrow V$.
Expectation of $R$ is denoted by $\mathbb{E}[R]$ and "summarizes" its distribution. Formally,

$$
\mathbb{E}[R]:=\sum_{\omega \in \mathcal{S}} \operatorname{Pr}[\omega] R[\omega]
$$

$\mathbb{E}[R]$ is also known as the "expected value" or the "mean" of the random variable $R$.
Q: We throw a standard dice, and define $R$ to be the random variable equal to the number that comes up. Calculate $\mathbb{E}[R]$.
$R$ has a uniform distribution i.e. $\operatorname{Pr}[R=1]=\ldots=\operatorname{Pr}[R=6]=\frac{1}{6}$. Hence, $\mathbb{E}[R]=$ $\frac{1}{6}[1+\ldots+6]=\frac{7}{2}$. Hence, a random variable does not necessarily achieve its expected value.
For a general uniform distribution, if $V=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ and $R \sim \operatorname{Uniform}\left(v_{1}, v_{n}\right)$, then $\mathbb{E}[R]=\frac{v_{1}+v_{2}+\ldots+v_{n}}{n}$ and hence the expectation is the average of the possible outcomes.
Q: Let $S:=1 / R$. Is $\mathbb{E}[S]=1 / \mathbb{E}[R]$ ? Ans: No. $1 / \mathbb{E}[R]=2 / 7, \mathbb{E}[S]=\frac{49}{120} \neq 1 / \mathbb{E}[R]$

## Expectation of Random Variables

Alternate definition: $\mathbb{E}[R]=\sum_{x \in \operatorname{Range}(R)} \times \operatorname{Pr}[R=x]$.

$$
\begin{aligned}
\mathbb{E}[R] & =\sum_{\omega \in \mathcal{S}} \operatorname{Pr}[\omega] R[\omega]=\sum_{x \in \operatorname{Range}(R)} \sum_{\omega \in[R(\omega)=x]} \operatorname{Pr}[\omega] R[\omega] \\
& =\sum_{x \in \operatorname{Range}(R)} x\left[\sum_{\omega \in[R(\omega)=x]} \operatorname{Pr}[\omega]\right]=\sum_{x \in \operatorname{Range}(R)} x \operatorname{Pr}[R=x]
\end{aligned}
$$

Advantage: This definition does not depend on the sample space.
If $\mathcal{I}_{A}$ is the indicator random variable for event $A$, then,

$$
\mathbb{E}\left[\mathcal{I}_{A}\right]=\operatorname{Pr}\left[\mathcal{I}_{A}=1\right](1)+\operatorname{Pr}\left[\mathcal{I}_{A}=0\right](0)=\operatorname{Pr}[A]
$$

Hence, for $\mathcal{I}_{A}$, the expectation is equal to the probability that event $A$ happens.

## Expectation of Random variables

Linearity of Expectation: For two random variables $R_{1}$ and $R_{2}, \mathbb{E}\left[R_{1}+R_{2}\right]=\mathbb{E}\left[R_{1}\right]+\mathbb{E}\left[R_{2}\right]$. Let $T:=R_{1}+R_{2}$, meaning that for $\omega \in \mathcal{S}, T(\omega)=R_{1}(\omega)+R_{2}(\omega)$.

$$
\begin{aligned}
& \mathbb{E}\left[R_{1}+R_{2}\right]=\mathbb{E}[T]=\sum_{\omega \in \mathcal{S}} T(\omega) \operatorname{Pr}[\omega]=\sum_{\omega \in \mathcal{S}}\left[R_{1}(\omega) \operatorname{Pr}[\omega]+R_{2}(\omega) \operatorname{Pr}[\omega]\right] \\
\Longrightarrow & \mathbb{E}\left[R_{1}+R_{2}\right]=\mathbb{E}\left[R_{1}\right]+\mathbb{E}\left[R_{2}\right]
\end{aligned}
$$

In general, for $n$ random variables $R_{1}, R_{2}, \ldots, R_{n}$ and constants $a_{1}, a_{2}, \ldots, a_{n}$,

$$
\mathbb{E}\left[\sum_{i=1}^{n} a_{i} R_{i}\right]=\sum_{i=1}^{n} a_{i} \mathbb{E}\left[R_{i}\right]
$$

## Questions?

## Expectation - Examples

Q: A construction firm has recently sent in bids for 3 jobs worth (in profits) 10,20 , and 40 (thousand) dollars. The firm can either win or lose the job. If its probabilities of winning the jobs are respectively $0.2,0.8$, and 0.3 , what is the firm's expected total profit?

Ans: $X_{i}$ is the random variable corresponding to the profits from job $i$ such that $p_{1}=0.2$, $p_{2}=0.8, p_{3}=0.3$. And $X=X_{1}+X_{2}+X_{3}$ is the random variable corresponding to the total profit. We wish to compute $\mathbb{E}[X]=\mathbb{E}\left[X_{1}\right]+\mathbb{E}\left[X_{2}\right]+\mathbb{E}\left[X_{3}\right] . X_{1}=10$ if the firms wins the job with $p_{1}=0.2$ and $X_{1}=0$ if the firm loses the job with $1-p_{1}=0.8$. Hence, $\mathbb{E}\left[X_{1}\right]=(0.2)(10)+(0.8)(0)=2$. Computing, $\mathbb{E}\left[X_{2}\right]$ and $\mathbb{E}\left[X_{3}\right]$ similarly, $\mathbb{E}[X]=(0.2)(10)+(0.8)(20)+(0.3)(40)=30$.
Q: If the company loses 5 (thousand) dollars if it did not win a job, what is the firm's expected profit.
Ans: $\mathbb{E}[X]=\mathbb{E}\left[X_{1}\right]+\mathbb{E}\left[X_{2}\right]+\mathbb{E}\left[X_{3}\right]=$
$[(0.2)(10)-(0.8)(5)]+[(0.8)(20)-(0.2)(5)]+[(0.3)(40)-(0.7)(5)]=30-8.5=21.5$

## Back to throwing dice

Q: We throw two standard dice, and define $R$ to be the random variable equal to the sum of the numbers that comes up on the dice. Calculate $\mathbb{E}[R]$
Answer 1: Recall that $\mathcal{S}=\{(1,1), \ldots,(6,6)\}$ and the range of $R$ is $V=\{2, \ldots, 12\}$. Calculate $\operatorname{Pr}[R=2], \operatorname{Pr}[R=3], \ldots, \operatorname{Pr}[R=12]$, and calculate $\mathbb{E}[R]=\sum_{x \in\{2,3, \ldots, 12\}} \times \operatorname{Pr}[R=x]$.
Answer 2: Let $R_{1}$ be the random variable equal to the number that comes up on the first dice, and $R_{2}$ be the random variable equal to the number on the second dice. We wish to compute $\mathbb{E}\left[R_{1}+R_{2}\right]$. Using linearity of expectation, $\mathbb{E}[R]=\mathbb{E}\left[R_{1}\right]+\mathbb{E}\left[R_{2}\right]$. We know that for each of the dice, $\mathbb{E}\left[R_{1}\right]=\mathbb{E}\left[R_{2}\right]=\frac{7}{2}$ and hence, $\mathbb{E}[R]=7$.

## Expectation of Random Variables

Q: If $R \sim \operatorname{Bernoulli}(p)$, compute $\mathbb{E}[R]$ ? For a Bernoulli random variable, the range of $R$ is $\{0,1\}$. And $\operatorname{Pr}[R=1]=p$

$$
\mathbb{E}[R]=\sum_{x \in\{0,1\}} \times \operatorname{Pr}[R=x]=(0)(1-p)+(1)(p)=p
$$

Q: If $R \sim \operatorname{Geo}(p)$, compute $\mathbb{E}[R]$ ? For a geometric random variable, Range $[R]=\{1,2, \ldots\}$ and $\operatorname{Pr}[R=k]=(1-p)^{k-1} p$.

$$
\begin{aligned}
& \mathbb{E}[R]=\sum_{k=1}^{\infty} k(1-p)^{k-1} p \Longrightarrow(1-p) \mathbb{E}[R]=\sum_{k=1}^{\infty} k(1-p)^{k} p \\
& \Longrightarrow(1-(1-p)) \mathbb{E}[R]=\sum_{k=1}^{\infty} k(1-p)^{k-1} p-\sum_{k=1}^{\infty} k(1-p)^{k} p \\
& \Longrightarrow \mathbb{E}[R]=\sum_{k=0}^{\infty}(k+1)(1-p)^{k}-\sum_{k=1}^{\infty} k(1-p)^{k}=1+\sum_{k=1}^{\infty}(1-p)^{k}=1+\frac{1-p}{1-(1-p)}=\frac{1}{p}
\end{aligned}
$$

When tossing a coin multiple times, on average, it will take $\frac{1}{p}$ tosses to get the first heads.

## Expectation of Random Variables

Q: If $R \sim \operatorname{Bin}(n, p)$, compute $\mathbb{E}[R]$ ?
Answer 1: For a binomial random variable, Range $[R]=\{0,1,2, \ldots n\}$ and $\operatorname{Pr}[R=k]=\binom{n}{k} p^{k}(1-p)^{n-k} . \mathbb{E}[R]=\sum_{k=0}^{n} k\binom{n}{k} p^{k}(1-p)^{n-k}$. Solve in Assignment 3!
Answer 2: Define $R_{i}$ to be the indicator random variable that we get a heads in toss $i$ of the coin. Recall that $R$ is the random variable equal to the number of heads in $n$ tosses. Hence,

$$
R=R_{1}+R_{2}+\ldots+R_{n} \Longrightarrow \mathbb{E}[R]=\mathbb{E}\left[R_{1}+R_{2}+\ldots+R_{n}\right]
$$

By linearity of expectation,

$$
\mathbb{E}[R]=\mathbb{E}\left[R_{1}\right]+\mathbb{E}\left[R_{2}\right]+\ldots+\mathbb{E}\left[R_{n}\right]=\operatorname{Pr}\left[R_{1}\right]+\operatorname{Pr}\left[R_{2}\right]+\ldots+\operatorname{Pr}\left[R_{n}\right]=n p
$$

If the probability of success is $p$ and there are $n$ trials, we expect $n p$ of the trials to succeed on average.

## Expectation - Examples

Q: We have a program that crashes with probability 0.1 in every hour. What is the average time after which we expect that program to crash? Ans: If $X$ is the random variable corresponding to the time it takes for the program to crash, then $X \sim \operatorname{Geo}(0.1)$. For a Geometric random variables, $\mathbb{E}[X]=1 / p=10$. Hence, we expect the program to crash after 10 hours on average.
Q: It is known that disks produced by a certain company will be defective with probability 0.01 independently of each other. The company sells the disks in packages of 10 and offers a money-back offer of 2 dollars for every disk that crashes in the package. On average, how much will this money-back offer cost the company per package?

Ans: As before, if $X$ is the random variable corresponding to the number of disks that crash, then we know that $X \sim \operatorname{Bin}(10,0.01)$ and $\mathbb{E}[X]=(10)(0.01)=0.1$. If $Y$ is the random variable equal to the cost of the money-back offer, then, $Y=2 X$. And we wish to compute $\mathbb{E}[Y]=2 \mathbb{E}[X]=2(0.1)=0.2$.

## Questions?

## Number Guessing Game

We have two envelopes. Each contains a distinct number in $\{0,1,2, \ldots, 100\}$. To win the game, we must determine which envelope contains the larger number. We are allowed to peek at the number in one envelope selected at random. Can we devise a winning strategy?

Strategy 1: We pick an envelope at random and guess that it contains the larger number (without even peeking at the number). This strategy wins only $50 \%$ of the time.

Strategy 2: We peek at the number and if its below 50 , we choose the other envelope.
But the numbers in the envelopes need not be random! The numbers are chosen "adversarially" in a way that will defeat our guessing strategy. For example, to "beat" Strategy 2, the two numbers can always be chosen to be below 50 .

Q: Can we do better than $50 \%$ chance of winning?

## Number Guessing Game

Suppose that we somehow knew a number $x$ that was in between the numbers in the envelopes. If we peek in one envelope and see a number. If it is bigger than $x$, we know its the higher number and choose that envelope. If it is smaller than $x$, we know that is the smaller number and choose the other envelope.
Of course, we do not know such a number $x$. But we can guess it!
Strategy 3: Choose a random number $x$ from $\{0.5,1.5,2.5, \ldots n-1 / 2\}$ according to the uniform distribution i.e. $\operatorname{Pr}[x=0.5]=\operatorname{Pr}[1.5]=\ldots=1 / n$. Then we peek at the number (denoted by $T$ ) in one envelope, and if $T>x$, we choose that envelope, else we choose the other envelope.

The advantage of such a randomized strategy is that the adversary cannot easily "adapt" to it. Q: But does it have better than $50 \%$ chance of winning?

## Number Guessing Game

Let the numbers in the two envelopes be $L$ (lower number) and $H$ (the higher number). Let us construct a tree diagram.


