CMPT 210: Probability and Computation

Lecture 10

Sharan Vaswani

June 10, 2022

Given two $n \times n$ matrices – A and B, if C = AB, then,

$$C_{i,j} = \sum_{k=1}^{n} A_{i,k} B_{k,j}$$

Hence, in the worst case, computing $C_{i,j}$ is an O(n) operation. There are n^2 entries to fill in C and hence, in the absence of additional structure, matrix multiplication takes $O(n^3)$ time.

There are non-trivial algorithms for doing matrix multiplication more efficiently:

- (Strassen, 1969) Requires $O(n^{2.81})$ operations.
- (Coppersmith-Winograd, 1987) Requires $O(n^{2.376})$ operations.
- (Alman-Williams, 2020) Requires $O(n^{2.373})$ operations.
- Belief is that it can be done in time $O(n^{2+\epsilon})$ for $\epsilon > 0$.

For simplicity, we will focus on A, B being binary matrices (all entries are either 0 or 1), and matrix multiplication mod 2, i.e. $C_{i,j} = (\sum_{k=1}^{n} A_{i,k} B_{k,j}) \mod 2$, implying that C is a binary matrix.

Example:
$$A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$ then $C = AB = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$

Objective: Verify whether a matrix multiplication operation is correct.

Trivial way: Do the matrix multiplication ourselves, and verify it using $O(n^3)$ (or $O(n^{2.373})$) operations.

Frievald's Algorithm: Randomized algorithm to verify matrix multiplication with high probability in $O(n^2)$ time.

For $n \times n$ matrices A, B and D, is $D = AB \pmod{2}$?

- Generate a random *n*-bit vector *x*, by making each bit *x_i* either 0 or 1 *independently* with probability ¹/₂. E.g, for *n* = 2, toss a fair coin independently twice with the scheme H is 0 and T is 1). If we get *HT*, then set *x* = [0; 1].
- 2. Compute $t = Bx \pmod{2}$ and $y = At = A(Bx) \pmod{2}$ and $z = Dx \pmod{2}$.
- 3. Output "yes" if y = z (all entries need to be equal), else output "no".

Computational complexity: Step 1 can be done in O(n) time. Step 2 requires 3 matrix vector multiplications and can be done in $O(n^2)$ time. Step 3 requires comparing two *n*-dimensional vectors and can be done in O(n) time. Hence, the total computational complexity is $O(n^2)$.

Let us run the algorithm on an example. Suppose we have generated x = [1; 0]

$$A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \quad ; \quad B = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \quad ; \quad D = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$
$$Bx = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \quad ; \quad y = A(Bx) = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \quad ; \quad z = Dx = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

Hence the algorithm will correctly output "no" since $D \neq AB \pmod{2}$.

Q: Suppose we have generated x = [1; 1]. What is y and z? Ans: y = [0; 1] and z = [0; 1]. In this case, y = z and the algorithm will incorrectly output "yes" even though $D \neq AB \pmod{2}$. Let us run the algorithm on an example. Suppose we have generated x = [1; 0].

$$A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \quad ; \quad B = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \quad ; \quad C = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$$
$$Bx = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \quad ; \quad y = A(Bx) = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \quad ; \quad z = Cx = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

Hence the algorithm will correctly output "yes" since $C = AB \pmod{2}$.

Q: Suppose we have generated x = [1; 1]. What is y and z? Ans: y = [0; 1] and z = [0; 1]. In this case again, y = z and the algorithm will correctly output "yes".

(Basic) Frievald's Algorithm

Let us analyze the algorithm for general matrix multiplication (not necessarily (mod 2)).

Case (i): If D = AB, does the algorithm always output "yes"? Yes! Since D = AB, for any vector x, Dx = ABx.

Case (ii) If $D \neq AB$, does the algorithm output "no"?

Claim: For any input matrices A, B, D if $D \neq AB$, then the (Basic) Frievald's algorithm will output "no" with probability $\geq \frac{1}{2}$.

$$\begin{vmatrix} D = AB \\ D \neq AB \end{vmatrix} \begin{vmatrix} \text{Yes} \\ 1 \\ 2 \\ \frac{1}{2} \end{vmatrix} > \frac{1}{2}$$

Table 1: Probabilities for Basic Frievalds Algorithm

(Basic) Frievald's Algorithm

If $D \neq AB$, we wish to compute the probability that algorithm outputs "yes". Define E := (AB - D) and r := Ex = (AB - D)x = y - z. If $D \neq AB$, then $\exists (i, j)$ s.t. $E_i \neq 0$. $\Pr[\text{Algorithm outputs "yes"}] = \Pr[y = z] = \Pr[r = 0] = \Pr[(r_1 = 0) \cap (r_2 = 0) \cap ... \cap (r_i = 0) \cap ...]$ $= \Pr[(r_i = 0)] \Pr[(r_1 = 0) \cap (r_2 = 0) \cap \dots \cap (r_n = 0) | r_i = 0] \le \Pr[r_i = 0]$ $r_{i} = \sum_{k=1}^{n} E_{i,k} x_{k} = E_{i,j} x_{j} + \sum_{k \neq i} E_{i,k} x_{k} = E_{i,j} x_{j} + \omega$ $(\omega := \sum_{k \neq i} E_{i,k} x_k)$ $\Pr[r_i = 0] = \Pr[r_i = 0|\omega = 0] \Pr[\omega = 0] + \Pr[r_i = 0|\omega \neq 0] \Pr[\omega \neq 0]$ $\Pr[r_i = 0 | \omega = 0] = \Pr[x_j = 0] = \frac{1}{2}$ $\Pr[r_i = 0 | \omega \neq 0] = \Pr[(x_j = 1) \cap E_{i,j} = -\omega] = \Pr[(x_j = 1)] \Pr[E_{i,j} = -\omega | x_j = 1] \le \Pr[(x_j = 1)] = \frac{1}{2}$ $\implies \Pr[r_i = 0] \le \frac{1}{2} \Pr[\omega = 0] + \frac{1}{2} \Pr[\omega \neq 0] = \frac{1}{2} \Pr[\omega = 0] + \frac{1}{2} [1 - \Pr[\omega = 0]] = \frac{1}{2}$ \implies Pr[Algorithm outputs "yes"] \leq Pr[$r_i = 0$] $\leq \frac{1}{2}$. 7 Hence, if $D \neq AB$, the Algorithm outputs "yes" with probability $\leq \frac{1}{2} \implies$ the Algorithm outputs "no" with probability $\geq \frac{1}{2}$.

In the worst case, the algorithm can be incorrect half the time! We promised the algorithm would return the correct answer with "high" probability close to 1.

A common trick in randomized algorithms is to have *m* independent trials of an algorithm and aggregate the answer in some way, reducing the probability of error, thus *amplifying the success probability*.

Questions?

Frievald's Algorithm

By repeating the *Basic Frievald's Algorithm* (from slide 7) m times, we will amplify the probability of success. The resulting complete Frievald's Algorithm is given by:

- 1 Run the Basic Frievald's Algorithm for m independent runs.
- 2 If any run of the Basic Frievald's Algorithm outputs "no", output "no".
- 3 If all runs of the Basic Frievald's Algorithm output "yes", output "yes".

Table 2: Probabilities for Frievald's Algorithm

If m = 20, then Frievald's algorithm will make mistake with probability $1/2^{20} \approx 10^{-6}$. Computational Complexity: $O(mn^2)$ Consider a randomized algorithm \mathcal{A} that is supposed to solve a binary decision problem i.e. it is supposed to answer either Yes or No. It has a one-sided error – (i) if the true answer is Yes, then the algorithm \mathcal{A} correctly outputs Yes with probability 1, but (ii) if the true answer is No, the algorithm \mathcal{A} incorrectly outputs Yes with probability $\leq \frac{1}{2}$.

Let us define a new algorithm \mathcal{B} that runs algorithm \mathcal{A} *m* times, and if *any* run of \mathcal{A} outputs No, algorithm \mathcal{B} outputs No. If *all* runs of \mathcal{A} output Yes, algorithm \mathcal{B} outputs Yes.

Q: What is the probability that algorithm \mathcal{B} correctly outputs Yes if the true answer is Yes, and correctly outputs No if the true answer is No?

 $\mathsf{Pr}[\mathcal{B} \text{ outputs Yes} \mid \mathsf{true \ answer \ is \ Yes}]$

- $= \Pr[\mathcal{A}_1 \text{ outputs Yes } \cap \mathcal{A}_2 \text{ outputs Yes } \cap \ldots \cap \mathcal{A}_m \text{ outputs Yes } | \text{ true answer is Yes }]$
- $= \prod_{i=1}^{n} \Pr[\mathcal{A}_i \text{ outputs Yes } | \text{ true answer is Yes }] = 1$ (Independence of runs)

 $\Pr[\mathcal{B} \text{ outputs No} \mid \text{true answer is No}]$

i-1

- $= 1 \mathsf{Pr}[\mathcal{B} \text{ outputs Yes} \mid \mathsf{true} \text{ answer is No} \;]$
- $= 1 \Pr[\mathcal{A}_1 \text{ outputs Yes } \cap \mathcal{A}_2 \text{ outputs Yes } \cap \ldots \cap \mathcal{A}_m \text{ outputs Yes } | \text{ true answer is No }]$ $= 1 \prod_{i=1}^m \Pr[\mathcal{A}_i \text{ outputs Yes } | \text{ true answer is No }] \ge 1 \frac{1}{2m}.$

When the true answer is Yes, both \mathcal{B} and \mathcal{A} correctly output Yes. When the true answer is No, \mathcal{A} incorrectly outputs Yes with probability $<\frac{1}{2}$, but \mathcal{B} incorrectly outputs Yes with probability $<\frac{1}{2^m}<<\frac{1}{2}$. By repeating the experiment, we have "amplified" the probability of success.

Questions?