CMPT 210: Probability and Computation

Lecture 10

Sharan Vaswani
June 10, 2022

Matrix Multiplication

Given two $n \times n$ matrices $-A$ and B, if $C=A B$, then,

$$
C_{i, j}=\sum_{k=1}^{n} A_{i, k} B_{k, j}
$$

Hence, in the worst case, computing $C_{i, j}$ is an $O(n)$ operation. There are n^{2} entries to fill in C and hence, in the absence of additional structure, matrix multiplication takes $O\left(n^{3}\right)$ time.
There are non-trivial algorithms for doing matrix multiplication more efficiently:

- (Strassen, 1969) Requires $O\left(n^{2.81}\right)$ operations.
- (Coppersmith-Winograd, 1987) Requires $O\left(n^{2.376}\right)$ operations.
- (Alman-Williams, 2020) Requires $O\left(n^{2.373}\right)$ operations.
- Belief is that it can be done in time $O\left(n^{2+\epsilon}\right)$ for $\epsilon>0$.

Verifying Matrix Multiplication

For simplicity, we will focus on A, B being binary matrices (all entries are either 0 or 1), and matrix multiplication mod 2, i.e. $C_{i, j}=\left(\sum_{k=1}^{n} A_{i, k} B_{k, j}\right) \bmod 2$, implying that C is a binary matrix.
Example: $A=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right], B=\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]$ then $C=A B=\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]$
Objective: Verify whether a matrix multiplication operation is correct.
Trivial way: Do the matrix multiplication ourselves, and verify it using $O\left(n^{3}\right)$ (or $O\left(n^{2.373}\right)$) operations.
Frievald's Algorithm: Randomized algorithm to verify matrix multiplication with high probability in $O\left(n^{2}\right)$ time.

(Basic) Frievald's Algorithm

For $n \times n$ matrices A, B and D, is $D=A B(\bmod 2)$?

1. Generate a random n-bit vector x, by making each bit x_{i} either 0 or 1 independently with probability $\frac{1}{2}$. E.g, for $n=2$, toss a fair coin independently twice with the scheme -H is 0 and T is 1). If we get $H T$, then set $x=[0 ; 1]$.
2. Compute $t=B x(\bmod 2)$ and $y=A t=A(B x)(\bmod 2)$ and $z=D x(\bmod 2)$.
3. Output "yes" if $y=z$ (all entries need to be equal), else output "no".

Computational complexity: Step 1 can be done in $O(n)$ time. Step 2 requires 3 matrix vector multiplications and can be done in $O\left(n^{2}\right)$ time. Step 3 requires comparing two n-dimensional vectors and can be done in $O(n)$ time. Hence, the total computational complexity is $O\left(n^{2}\right)$.

(Basic) Frievald's Algorithm

Let us run the algorithm on an example. Suppose we have generated $x=[1 ; 0]$

$$
\begin{array}{r}
A=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \quad B=\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right] \quad ; \quad D=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right] \\
B x=\left[\begin{array}{l}
1 \\
1
\end{array}\right] ; \quad y=A(B x)=\left[\begin{array}{l}
1 \\
1
\end{array}\right] ; \quad z=D x=\left[\begin{array}{l}
1 \\
0
\end{array}\right]
\end{array}
$$

Hence the algorithm will correctly output "no" since $D \neq A B(\bmod 2)$.
Q: Suppose we have generated $x=[1 ; 1]$. What is y and z ? Ans: $y=[0 ; 1]$ and $z=[0 ; 1]$.
In this case, $y=z$ and the algorithm will incorrectly output "yes" even though $D \neq A B(\bmod 2)$.

(Basic) Frievald's Algorithm

Let us run the algorithm on an example. Suppose we have generated $x=[1 ; 0]$.

$$
\begin{array}{r}
A=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \quad B=\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right] \quad ; \quad C=\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right] \\
B x=\left[\begin{array}{l}
1 \\
1
\end{array}\right] ; \quad y=A(B x)=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \quad ; \quad z=C x=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
\end{array}
$$

Hence the algorithm will correctly output "yes" since $C=A B(\bmod 2)$.
Q: Suppose we have generated $x=[1 ; 1]$. What is y and z ? Ans: $y=[0 ; 1]$ and $z=[0 ; 1]$. In this case again, $y=z$ and the algorithm will correctly output "yes".

(Basic) Frievald's Algorithm

Let us analyze the algorithm for general matrix multiplication (not necessarily (mod 2)).
Case (i): If $D=A B$, does the algorithm always output "yes"? Yes! Since $D=A B$, for any vector $x, D x=A B x$.

Case (ii) If $D \neq A B$, does the algorithm output "no"?
Claim: For any input matrices A, B, D if $D \neq A B$, then the (Basic) Frievald's algorithm will output "no" with probability $\geq \frac{1}{2}$.

$$
\left\lvert\, \begin{array}{c|c|c}
& \text { Yes } & \text { No } \\
D=A B & 1 & 0 \\
D \neq A B & <\frac{1}{2} & \geq \frac{1}{2}
\end{array}\right.
$$

Table 1: Probabilities for Basic Frievalds Algorithm

(Basic) Frievald's Algorithm

If $D \neq A B$, we wish to compute the probability that algorithm outputs "yes". Define $E:=(A B-D)$ and $r:=E x=(A B-D) x=y-z$. If $D \neq A B$, then $\exists(i, j)$ s.t. $E_{i, j} \neq 0$.
$\operatorname{Pr}\left[\right.$ Algorithm outputs "yes"] $=\operatorname{Pr}[y=z]=\operatorname{Pr}[r=0]=\operatorname{Pr}\left[\left(r_{1}=0\right) \cap\left(r_{2}=0\right) \cap \ldots \cap\left(r_{i}=0\right) \cap \ldots\right]$
$=\operatorname{Pr}\left[\left(r_{i}=0\right)\right] \operatorname{Pr}\left[\left(r_{1}=0\right) \cap\left(r_{2}=0\right) \cap \ldots \cap\left(r_{n}=0\right) \mid r_{i}=0\right] \leq \operatorname{Pr}\left[r_{i}=0\right]$
$r_{i}=\sum_{k=1}^{n} E_{i, k} x_{k}=E_{i, j} x_{j}+\sum_{k \neq j} E_{i, k} x_{k}=E_{i, j} x_{j}+\omega$

$$
\left(\omega:=\sum_{k \neq j} E_{i, k} x_{k}\right)
$$

$\operatorname{Pr}\left[r_{i}=0\right]=\operatorname{Pr}\left[r_{i}=0 \mid \omega=0\right] \operatorname{Pr}[\omega=0]+\operatorname{Pr}\left[r_{i}=0 \mid \omega \neq 0\right] \operatorname{Pr}[\omega \neq 0]$
$\operatorname{Pr}\left[r_{i}=0 \mid \omega=0\right]=\operatorname{Pr}\left[x_{j}=0\right]=\frac{1}{2}$
$\operatorname{Pr}\left[r_{i}=0 \mid \omega \neq 0\right]=\operatorname{Pr}\left[\left(x_{j}=1\right) \cap E_{i, j}=-\omega\right]=\operatorname{Pr}\left[\left(x_{j}=1\right)\right] \operatorname{Pr}\left[E_{i, j}=-\omega \mid x_{j}=1\right] \leq \operatorname{Pr}\left[\left(x_{j}=1\right)\right]=\frac{1}{2}$
$\Longrightarrow \operatorname{Pr}\left[r_{i}=0\right] \leq \frac{1}{2} \operatorname{Pr}[\omega=0]+\frac{1}{2} \operatorname{Pr}[\omega \neq 0]=\frac{1}{2} \operatorname{Pr}[\omega=0]+\frac{1}{2}[1-\operatorname{Pr}[\omega=0]]=\frac{1}{2}$
$\Longrightarrow \operatorname{Pr}[$ Algorithm outputs "yes" $] \leq \operatorname{Pr}\left[r_{i}=0\right] \leq \frac{1}{2}$.

(Basic) Frievald's Algorithm

Hence, if $D \neq A B$, the Algorithm outputs "yes" with probability $\leq \frac{1}{2} \Longrightarrow$ the Algorithm outputs "no" with probability $\geq \frac{1}{2}$.
In the worst case, the algorithm can be incorrect half the time! We promised the algorithm would return the correct answer with "high" probability close to 1 .

A common trick in randomized algorithms is to have m independent trials of an algorithm and aggregate the answer in some way, reducing the probability of error, thus amplifying the success probability.

Questions?

Frievald's Algorithm

By repeating the Basic Frievald's Algorithm (from slide 7) m times, we will amplify the probability of success. The resulting complete Frievald's Algorithm is given by:

1 Run the Basic Frievald's Algorithm for m independent runs.
2 If any run of the Basic Frievald's Algorithm outputs "no", output "no".
3 If all runs of the Basic Frievald's Algorithm output "yes", output "yes".

$$
\left\lvert\, \begin{array}{c|c|c|}
& \text { Yes } & \text { No } \\
D=A B & 1 & 0 \\
D \neq A B & <\frac{1}{2^{m}} & \geq 1-\frac{1}{2^{m}}
\end{array}\right.
$$

Table 2: Probabilities for Frievald's Algorithm

If $m=20$, then Frievald's algorithm will make mistake with probability $1 / 2^{20} \approx 10^{-6}$.
Computational Complexity: $O\left(m n^{2}\right)$

Probability Amplification

Consider a randomized algorithm \mathcal{A} that is supposed to solve a binary decision problem i.e. it is supposed to answer either Yes or No. It has a one-sided error - (i) if the true answer is Yes, then the algorithm \mathcal{A} correctly outputs Yes with probability 1, but (ii) if the true answer is No, the algorithm \mathcal{A} incorrectly outputs Yes with probability $\leq \frac{1}{2}$.

Let us define a new algorithm \mathcal{B} that runs algorithm $\mathcal{A} m$ times, and if any run of \mathcal{A} outputs No, algorithm \mathcal{B} outputs No. If all runs of \mathcal{A} output Yes, algorithm \mathcal{B} outputs Yes.

Q: What is the probability that algorithm \mathcal{B} correctly outputs Yes if the true answer is Yes, and correctly outputs No if the true answer is No?

Probability Amplification - Analysis

$$
\begin{aligned}
& \operatorname{Pr}[\mathcal{B} \text { outputs Yes } \mid \text { true answer is Yes }] \\
& =\operatorname{Pr}\left[\mathcal{A}_{1} \text { outputs Yes } \cap \mathcal{A}_{2} \text { outputs Yes } \cap \ldots \cap \mathcal{A}_{m} \text { outputs Yes } \mid \text { true answer is Yes }\right] \\
& =\prod_{i=1}^{m} \operatorname{Pr}\left[\mathcal{A}_{i} \text { outputs Yes } \mid \text { true answer is Yes }\right]=1 \quad \text { (Independence of runs) } \\
& \operatorname{Pr}[\mathcal{B} \text { outputs No } \mid \text { true answer is No }] \\
& =1-\operatorname{Pr}[\mathcal{B} \text { outputs Yes } \mid \text { true answer is No }] \\
& =1-\operatorname{Pr}\left[\mathcal{A}_{1} \text { outputs Yes } \cap \mathcal{A}_{2} \text { outputs Yes } \cap \ldots \cap \mathcal{A}_{m} \text { outputs Yes } \mid \text { true answer is No }\right] \\
& =1-\prod_{i=1}^{m} \operatorname{Pr}\left[\mathcal{A}_{i} \text { outputs Yes } \mid \text { true answer is No }\right] \geq 1-\frac{1}{2^{m}} .
\end{aligned}
$$

When the true answer is Yes, both \mathcal{B} and \mathcal{A} correctly output Yes. When the true answer is No, \mathcal{A} incorrectly outputs Yes with probability $<\frac{1}{2}$, but \mathcal{B} incorrectly outputs Yes with probability $<\frac{1}{2^{m}} \ll \frac{1}{2}$. By repeating the experiment, we have "amplified" the probability of success.

Questions?

