Assignment 1
 CMPT 210

Due: In class on Friday, 27 May

1 Sets [20 marks]

(a) For $\mathbb{N}=\{0,1,2, \ldots\}$, enumerate the elements of the set $A=\left\{x \in \mathbb{N} \mid x^{2}+x-6 \leq 0\right\}$. [5 marks]
(b) In Lecture 1, we proved the distributive law for intersection,

$$
A \cap(B \cup C)=(A \cap B) \cup(A \cap C) .
$$

Prove the distributive law for union,

$$
A \cup(B \cap C)=(A \cup B) \cap(A \cup C) .
$$

using both (i) Venn diagrams and (ii) the distributive law: x OR (y AND $z)=(x$ OR $y)$ AND (x OR z). [5 + 5 marks]
(c) The power set pow (A) of a set A is the set of all subsets formed from the elements of A. For example, if $A=\{1,2\}$, the $\operatorname{pow}(A)=\{\emptyset,\{1\},\{2\},\{1,2\}\}$. Prove that for any set $A,|\operatorname{pow}(A)|=2^{|A|}$ [5 marks].

2 Functions [20 marks]

(a) For functions $f: A \rightarrow B$ and $g: B \rightarrow C$, the function composition denoted as $g \circ f$ is a function from $A \rightarrow C$ such that $(g \circ f)(x)=g(f(x))$. For example, function $f: \mathbb{R}_{+} \rightarrow \mathbb{N}$ such that $f(x)=\lceil x\rceil$ corresponds to the ceiling operation that rounds a real number to the nearest integer larger than the number. E.g. $f(2.3)=3$. Function $g: \mathbb{N} \rightarrow \mathbb{N}$ is the $\bmod 41$ function we saw in Lecture 3 such that $g(x)=x \bmod 41$. E.g. $g(52)=52 \bmod 41=11$.

- What is the domain, codomain, range of f ? [2 marks]
- What is the domain, codomain, range of g ? [2 marks]
- What is the domain, codomain, range of $g \circ f$? [4 marks]
- Calculate the value of $(g \circ f)(41.1)+f(41.1)+g(0)$. [2 marks]
(b) The inverse of a bijective function $s: A \rightarrow B$ is the function $s^{-1}: B \rightarrow A$ such that for $x \in A, y \in B$ if $y=s(x)$, then $x=s^{-1}(y)$. For example, consider $f(x)=\lceil x\rceil, g(x)=x \bmod 41$ from the previous question and $h: \mathbb{R}_{+} \rightarrow \mathbb{R}$ such that $h(x)=\log _{10}(x)$.
- For a bijective function $s: A \rightarrow A$, prove that $\left(s^{-1} \circ s\right)(x)=x$. [4 marks]
- Is $f(x)$ invertible i.e. is f^{-1} a function? If so, compute $f^{-1}(3)$. [2 marks]
- Is $g(x)$ invertible i.e. is g^{-1} a function? If so, compute $g^{-1}(11)$. [2 marks]
- Is $h(x)$ invertible i.e. is h^{-1} a function? If so, compute $h^{-1}(10)$. [2 marks]

3 Counting [105 marks]

(a) A license plate consists of either:

- 3 upper-case letters followed by 3 digits (standard plate)
- 5 upper-case letters (vanity plate)
- 2 characters - each of which is either an upper-case letter or number (big shot plate)

If P is the set of all possible plates, and $L=\{A, B, \ldots, Z\}$ is the set of upper-case letters, and $D=\{0,1, \ldots, 9\}$ is the set of digits,

- Express P in terms of L, D using the set union \cup and product \times operations. [10 marks]
- Using the sum rule and the product rule, compute $|P|$. [5 marks]
(b) In Lecture 3, we used a combinatorial technique to prove Pascal's identity:

$$
\binom{n}{k}=\binom{n-1}{k-1}+\binom{n-1}{k}
$$

Using the definitions of $\binom{n}{k}$ and n !, prove Pascal's inequality algebraically. [10 marks]
(c) Given m distinct numbers, how many $n \times n$ matrices are possible such that the matrix has all distinct entries? Assume that $m>n^{2}$. [10 marks]
(d) In Lecture 3, we saw the Binomial Theorem - for all $n \in \mathbb{N}$ and $a, b \in \mathbb{R}$,

$$
(a+b)^{n}=\sum_{k=0}^{n}\binom{n}{k} a^{n-k} b^{k}
$$

and generalized it to the Multinomial Theorem - for all $m, n \in \mathbb{N}$ and $z_{1}, z_{2}, \ldots z_{m} \in \mathbb{R}$,

$$
\left(z_{1}+z_{2}+\ldots+z_{m}\right)^{n}=\sum_{\substack{k_{1}, k_{2}, \ldots, k_{m} \\ k_{1}+k_{2}+\ldots k_{m}=n}}\binom{n}{k_{1}, k_{2}, \ldots, k_{m}} z_{1}^{k_{1}} z_{2}^{k_{2}} \ldots z_{m}^{k_{m}}
$$

where $\binom{n}{k_{1}, k_{2}, \ldots, k_{m}}=\frac{n!}{k_{1}!k_{2}!\ldots k_{m}!}$.

- What is the number of terms in the expansion $(a+b)^{n}$? [5 marks]
- What is the number of terms in the expansion $\left(z_{1}+z_{2}+\ldots+z_{m}\right)^{n}$? [10 marks]
(e) For an undirected graph with n vertices $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$,
- What is the maximum possible number of edges if i) self-loops (edges of the form $v_{1} \rightarrow v_{1}$) are not permitted, ii) if self-loops are permitted? [5 marks]
- Given the answer to the previous question, what is the total number of possible graphs that can be constructed if i) self-loops (edges of the form $v_{1} \rightarrow v_{1}$) are not permitted, ii) if self-loops are permitted? [5 marks]
(f) What is the total number of permutations of the letters (i) BANANA (ii) APPLE (iii) GRAPES (iv) A'PPLE (v) BANANA' where A' is a new letter of the alphabet and is not identical to A. [5 x 2 marks]
(g) A number in $\{6 \ldots, 48\}$ is composite iff it is divisible by either 2,3 or 5 . If D_{i} is the set of numbers divisible by i for $i \in 2,3,5$,
- Compute $\left|D_{i}\right|$ for $i \in\{2,3,5\}$. [3 marks]
- Compute $\left|D_{i} \cap D_{j}\right|$ for $i, j \in\{2,3,5\}$ and $i<j$. [3×2 marks]
- Compute $\left|D_{2} \cap D_{3} \cap D_{5}\right|$. [3 marks]
- Use the inclusion-exclusion principle to compute the number of prime numbers in $\{6, \ldots, 48\}$. [3 marks]
(h) Consider tossing a fair coin 100 times and let us record the sequence. For example, if we toss the coin 3 times, we might get the sequence HHT corresponding to heads in the first 2 tosses and tails in the third toss. For 100 tosses of the coin, What is the number of sequences in which we can get with, [4×5 marks]
- 25 heads, 75 tails
- 50 heads, 50 tails
- 75 heads, 25 tails
- 100 heads, 0 tails

4 Pigeonhole principle [25 marks]

(a) SFU ID numbers are 9 digit numbers that start with 3 . How many students do we need in this class such that there are at least two students with the same sum of their SFU ID digits? [10 marks]
(b) Prove that for any 5 points in (the interior of) a unit square (one that has side length $=1$), there exist 2 points at distance less than $\frac{1}{\sqrt{2}}$. [15 marks]

